Home
Class 9
MATHS
Factorise: 4(2x-3y)^(2) - 8x + 12y -3...

Factorise: `4(2x-3y)^(2) - 8x + 12y -3`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 4(2x - 3y)^2 - 8x + 12y - 3 \), we can follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ 4(2x - 3y)^2 - 8x + 12y - 3 \] ### Step 2: Expand the square term Recognize that \( (2x - 3y)^2 \) can be expanded, but in this case, we will keep it as is for easier manipulation. ### Step 3: Group the terms Notice that \( -8x + 12y - 3 \) can be grouped with the square term: \[ 4(2x - 3y)^2 - (8x - 12y + 3) \] ### Step 4: Substitute for simplicity Let \( a = 2x - 3y \). Then the expression becomes: \[ 4a^2 - 8x + 12y - 3 \] ### Step 5: Rewrite \( -8x + 12y \) We can express \( -8x + 12y \) in terms of \( a \): \[ -8x + 12y = -4(2x - 3y) = -4a \] Thus, the expression now looks like: \[ 4a^2 - 4a - 3 \] ### Step 6: Factor the quadratic expression Now we need to factor \( 4a^2 - 4a - 3 \). We can do this by finding two numbers that multiply to \( 4 \times -3 = -12 \) and add to \( -4 \). The numbers are \( -6 \) and \( 2 \): \[ 4a^2 - 6a + 2a - 3 \] ### Step 7: Group the terms Group the terms: \[ (4a^2 - 6a) + (2a - 3) \] Factor out the common terms: \[ 2a(2a - 3) + 1(2a - 3) \] ### Step 8: Factor out the common binomial Now factor out the common factor \( (2a - 3) \): \[ (2a + 1)(2a - 3) \] ### Step 9: Substitute back for \( a \) Replace \( a \) back with \( 2x - 3y \): \[ (2(2x - 3y) + 1)(2(2x - 3y) - 3) \] This simplifies to: \[ (4x - 6y + 1)(4x - 6y - 3) \] ### Final Result Thus, the factorised form of the given expression is: \[ (4x - 6y + 1)(4x - 6y - 3) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (x-y)^(3) - 8x^(3)

Factorise : 4(x+y)^(2) - 3(x+y)

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : (x-2y)^(2) - 12(x-2y) + 32

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10

Factorise : 16 x^(2) - 8x - 3

Factorise 8( 3x - 2y ) ^(2) - 6x + 4y -1

Factorise : 2x^(3) + 54y^(3) - 4x - 12y

Factorise : (iv) (2x - y)^(3) - (2x - y)