Home
Class 9
MATHS
Factorise : 8a b^(2) + 12 a^(2)b...

Factorise :
`8a b^(2) + 12 a^(2)b`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 8ab^2 + 12a^2b \), we will follow these steps: ### Step 1: Identify the common factors First, we need to identify the common factors in both terms of the expression. The two terms are \( 8ab^2 \) and \( 12a^2b \). - The coefficients are 8 and 12. The greatest common divisor (GCD) of 8 and 12 is 4. - The variable \( a \) appears in both terms, with the lowest power being \( a^1 \). - The variable \( b \) also appears in both terms, with the lowest power being \( b^1 \). Thus, the common factor is \( 4ab \). ### Step 2: Factor out the common factor Now, we will factor out \( 4ab \) from the expression: \[ 8ab^2 + 12a^2b = 4ab(2b) + 4ab(3a) \] ### Step 3: Write the expression in factored form Now, we can combine the factored terms: \[ 8ab^2 + 12a^2b = 4ab(2b + 3a) \] ### Final Answer The factorised form of the expression \( 8ab^2 + 12a^2b \) is: \[ 4ab(2b + 3a) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 7b^(2) - 8b +1

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36

Factorise 98 ( a+b)^(2) - 2

Factorise : (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : a^(2) + 4a + 4 -b^(2)

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : a^(2) + bc- ac - b^(2)

Factorise : a b^(2) - (a-1) b-1 .