Home
Class 9
MATHS
Factorise: x^(3)-3x^(2) -x +3...

Factorise: `x^(3)-3x^(2) -x +3`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^3 - 3x^2 - x + 3 \), we will follow these steps: ### Step 1: Group the terms We start by grouping the terms in pairs: \[ (x^3 - 3x^2) + (-x + 3) \] ### Step 2: Factor out common terms from each group From the first group \( x^3 - 3x^2 \), we can factor out \( x^2 \): \[ x^2(x - 3) \] From the second group \( -x + 3 \), we can factor out \( -1 \): \[ -1(x - 3) \] Now, we rewrite the expression: \[ x^2(x - 3) - 1(x - 3) \] ### Step 3: Factor out the common binomial factor Now we see that \( (x - 3) \) is a common factor: \[ (x - 3)(x^2 - 1) \] ### Step 4: Recognize and apply the difference of squares The expression \( x^2 - 1 \) can be factored further using the difference of squares identity \( a^2 - b^2 = (a - b)(a + b) \): \[ x^2 - 1 = (x - 1)(x + 1) \] ### Step 5: Combine the factors Now we can write the complete factorization: \[ (x - 3)(x - 1)(x + 1) \] Thus, the final factorization of the expression \( x^3 - 3x^2 - x + 3 \) is: \[ (x - 3)(x - 1)(x + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise 18x^(3)-27x^(2)-35x .

Factorise x^(3)-7x+6 .

Factorise 8x^2y^3-x^5

Factorise : 3x^(2) - 11x - 4

Factorise : (x^(2) -3x)(x^(2)-3x-1)-20

Factorise : -x^(2) y - x + 3xy + 3

Factorise : x^4+3x^2-28

Factorise : 2sqrt(3)x^(2) + x - 5sqrt(3)

Factorise : 16 x^(2) - 8x - 3

factorise (i) 2x^(3)-3x^(2)-17x+30 (ii) x^(3) -6x^(2)+11x-6 (iii) x^(3)+x^(2)-4x-4 (iv) 3x^(2)-x^(2)-3x+1