Home
Class 9
MATHS
Simplify (8^(3a)xx2^(5)xx2^(2a))/(4xx2^(...

Simplify `(8^(3a)xx2^(5)xx2^(2a))/(4xx2^(11a)xx2^(-2a))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((8^{3a} \times 2^{5} \times 2^{2a}) / (4 \times 2^{11a} \times 2^{-2a})\), we will follow these steps: ### Step 1: Rewrite the bases in terms of powers of 2 We know that: - \(8 = 2^3\) - \(4 = 2^2\) Thus, we can rewrite the expression as: \[ \frac{(2^3)^{3a} \times 2^{5} \times 2^{2a}}{2^{2} \times 2^{11a} \times 2^{-2a}} \] ### Step 2: Apply the power of a power rule Using the identity \((a^b)^c = a^{bc}\), we can simplify \((2^3)^{3a}\): \[ (2^3)^{3a} = 2^{3 \cdot 3a} = 2^{9a} \] Now the expression becomes: \[ \frac{2^{9a} \times 2^{5} \times 2^{2a}}{2^{2} \times 2^{11a} \times 2^{-2a}} \] ### Step 3: Combine the powers in the numerator Using the identity \(a^b \times a^c = a^{b+c}\), we combine the powers in the numerator: \[ 2^{9a + 5 + 2a} = 2^{11a + 5} \] ### Step 4: Combine the powers in the denominator Similarly, we combine the powers in the denominator: \[ 2^{2 + 11a - 2a} = 2^{11a - 2a + 2} = 2^{9a + 2} \] ### Step 5: Apply the quotient rule for exponents Using the identity \(\frac{a^b}{a^c} = a^{b-c}\), we can simplify the expression: \[ \frac{2^{11a + 5}}{2^{9a + 2}} = 2^{(11a + 5) - (9a + 2)} \] ### Step 6: Simplify the exponent Now we simplify the exponent: \[ (11a + 5) - (9a + 2) = 11a - 9a + 5 - 2 = 2a + 3 \] ### Final Result Thus, the simplified expression is: \[ 2^{2a + 3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify (2^3 xx 2^2 - 3^2 xx 3)

Simplify and write the in the exponential form: (2^(4)xx2xx7^(3)xx7^(6))/(2^(3)xx7^(4))

Simplify: (i) 2^(55)xx2^(60)-2^(97)xx2^(18) (ii) 2^3xxa^3xx5a^4 , (iii) (3^n+3^(n+1))/(3^(n+1)-3^n), Where n is a natural numbers.

Find the value of n, given : (2xx4^(3)xx2^(n-4)xx3xx2^(n+2))/(3^(3)xx2^(16))=(2)/(9)

Simplify and write the following in the exponential form: (i) ((-3)^(5)xx4^(6)xx4)/((-3)^(2)xx4^(9)) (ii) (11^(4)xx17^(3)xx19^(5))/(11^(2)xx17^(2)xx19^(2))

Simplify : (i)3^((1/3)xx(11/5))" "(ii)((1)/(2))^(1/5)xx2^(3/5)

Simplify : (-5\ xx2/(15))(6\ xx2/9)