Home
Class 9
MATHS
If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)...

If `4^(x+3)=112+8xx4^(x)`, find `(18x)^(3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4^{(x+3)} = 112 + 8 \cdot 4^x \), and find \( (18x)^{3x} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 4^{(x+3)} = 112 + 8 \cdot 4^x \] ### Step 2: Simplify the left side Using the property of exponents, we can rewrite \( 4^{(x+3)} \) as: \[ 4^{(x+3)} = 4^x \cdot 4^3 = 4^x \cdot 64 \] So, the equation becomes: \[ 64 \cdot 4^x = 112 + 8 \cdot 4^x \] ### Step 3: Rearrange the equation Now, we can move the \( 8 \cdot 4^x \) term to the left side: \[ 64 \cdot 4^x - 8 \cdot 4^x = 112 \] This simplifies to: \[ (64 - 8) \cdot 4^x = 112 \] \[ 56 \cdot 4^x = 112 \] ### Step 4: Solve for \( 4^x \) Now, divide both sides by 56: \[ 4^x = \frac{112}{56} \] \[ 4^x = 2 \] ### Step 5: Express \( 4^x \) in terms of base 2 Since \( 4 = 2^2 \), we can write: \[ (2^2)^x = 2 \] This simplifies to: \[ 2^{2x} = 2^1 \] ### Step 6: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 2x = 1 \] Now, solve for \( x \): \[ x = \frac{1}{2} \] ### Step 7: Find \( (18x)^{3x} \) Now that we have \( x \), we can substitute it into \( (18x)^{3x} \): \[ (18 \cdot \frac{1}{2})^{3 \cdot \frac{1}{2}} = (9)^{\frac{3}{2}} \] ### Step 8: Simplify \( 9^{\frac{3}{2}} \) We can express \( 9 \) as \( 3^2 \): \[ (3^2)^{\frac{3}{2}} = 3^{2 \cdot \frac{3}{2}} = 3^3 \] Calculating \( 3^3 \): \[ 3^3 = 27 \] ### Final Answer Thus, the value of \( (18x)^{3x} \) is: \[ \boxed{27} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

If 8^(x) xx 4^(y) = 32 and 81 ^(x) xx 27 ^(y) = 3 , find the value of x and y

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

If 2^(x) = 4 xx 2^(y) and 9 xx 3^(x) = 3^(-y) , find the values of x and y.

If 3x- (4)/(x)= 4 and x ne 0 , find 27 x^(3)- (64)/(x^(3))

If 3x-(4)/(x)=4 , find 27x^(3)-(64)/(x^(3))

If (16 ^(3x))(32 ^(x))(8 ^(3x))=((4 ^(6x)) (32^(3x)))/(4), then what is the value of x ?

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

If 3x - (1)/(3x ) =5 , find : (ii) 81x^4 + (1)/( 81x^4)

Evalutate lim_(x to 4)((x^(2) - x - 12)^(18))/((x^(3) - 8x^(2) + 16x)^(9))

Set A is comprised of the following terms : (3x), (3x-4), (3x-8), (3x-12), (3x-16), and (3x-20). {:("Quantity A","Quantity B"),("The sum of all terms in Set A",18x-70):}