Home
Class 9
MATHS
Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15...

Evaluate : `(2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25^(m-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{2^n \times 6^{m+1} \times 10^{m-n} \times 15^{m+n-2}}{4^m \times 3^{2m+n} \times 25^{m-1}}, \] we will follow these steps: ### Step 1: Rewrite the bases in terms of their prime factors 1. **Rewrite \(6\), \(10\), \(15\), \(4\), and \(25\)**: - \(6 = 2 \times 3\) - \(10 = 2 \times 5\) - \(15 = 3 \times 5\) - \(4 = 2^2\) - \(25 = 5^2\) Now, substituting these into the expression gives: \[ \frac{2^n \times (2 \times 3)^{m+1} \times (2 \times 5)^{m-n} \times (3 \times 5)^{m+n-2}}{(2^2)^m \times 3^{2m+n} \times (5^2)^{m-1}}. \] ### Step 2: Simplify the expression 2. **Expand the terms**: - \(6^{m+1} = (2 \times 3)^{m+1} = 2^{m+1} \times 3^{m+1}\) - \(10^{m-n} = (2 \times 5)^{m-n} = 2^{m-n} \times 5^{m-n}\) - \(15^{m+n-2} = (3 \times 5)^{m+n-2} = 3^{m+n-2} \times 5^{m+n-2}\) Now, substituting these expansions into the expression gives: \[ \frac{2^n \times 2^{m+1} \times 3^{m+1} \times 2^{m-n} \times 5^{m-n} \times 3^{m+n-2} \times 5^{m+n-2}}{(2^2)^m \times 3^{2m+n} \times (5^2)^{m-1}}. \] ### Step 3: Combine like bases 3. **Combine the powers of like bases in the numerator**: - For \(2\): \(2^{n + (m+1) + (m-n)} = 2^{2m + 1}\) - For \(3\): \(3^{(m+1) + (m+n-2)} = 3^{2m + n - 1}\) - For \(5\): \(5^{(m-n) + (m+n-2)} = 5^{2m - 2}\) So the numerator simplifies to: \[ 2^{2m + 1} \times 3^{2m + n - 1} \times 5^{2m - 2}. \] ### Step 4: Simplify the denominator 4. **Rewrite the denominator**: - \(4^m = (2^2)^m = 2^{2m}\) - \(25^{m-1} = (5^2)^{m-1} = 5^{2m - 2}\) Thus, the denominator becomes: \[ 2^{2m} \times 3^{2m+n} \times 5^{2m - 2}. \] ### Step 5: Write the complete expression Now, we can write the complete expression as: \[ \frac{2^{2m+1} \times 3^{2m+n-1} \times 5^{2m-2}}{2^{2m} \times 3^{2m+n} \times 5^{2m-2}}. \] ### Step 6: Cancel out the common terms 5. **Cancel out the common terms**: - For \(2\): \(2^{2m + 1 - 2m} = 2^1 = 2\) - For \(3\): \(3^{(2m + n - 1) - (2m + n)} = 3^{-1} = \frac{1}{3}\) - For \(5\): \(5^{(2m - 2) - (2m - 2)} = 5^0 = 1\) Thus, the expression simplifies to: \[ \frac{2}{3}. \] ### Final Answer Therefore, the final answer is: \[ \frac{2}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

The value of (2^(m).3^(2m-n).5^(m+n+3).6^(n+1))/(6^(m+1).10^(n+3).15^(m))

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^(l))/(a^(-m)))^(l-m)=1

find the value of n, given : (4^(n-2)xx2^(n-5)xx6xx2^(n+3))/(3xx6^(2))=(4)/(18)

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

Hardness of water is 200 ppm. The normality and molarity of CaCO_3 in the water is (a). 2xx10^(-6)(N,2xx10^(-6)M (b). 4xx10^(-2)N,2xx10^(-2)M (c). 4xx10^(-3)N,2xx10^(-3)M (d). 4xx10^(-1)N,2xx10^(-1)M

Simplify: (i) (10xx5^(n+1)+25xx5^n)/(3xx5^(n+2)+10xx5^(n+1)) (ii) ((16)^7xx(25)^5xx(81)^3)/((15)^7xx(24)^5xx(80)^3)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals