Home
Class 9
MATHS
Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))...

Evaluate : `((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp))xx((x^(p))/(x^(q)))^((1)/(pq))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \left( \frac{x^q}{x^r} \right)^{\frac{1}{qr}} \cdot \left( \frac{x^r}{x^p} \right)^{\frac{1}{rp}} \cdot \left( \frac{x^p}{x^q} \right)^{\frac{1}{pq}}, \] we will follow these steps: ### Step 1: Apply the Quotient Rule of Exponents Using the property of exponents that states \(\frac{x^m}{x^n} = x^{m-n}\), we can simplify each fraction inside the parentheses. \[ \frac{x^q}{x^r} = x^{q - r}, \quad \frac{x^r}{x^p} = x^{r - p}, \quad \frac{x^p}{x^q} = x^{p - q}. \] ### Step 2: Rewrite the Expression Now we can rewrite the original expression using the results from Step 1: \[ \left( x^{q - r} \right)^{\frac{1}{qr}} \cdot \left( x^{r - p} \right)^{\frac{1}{rp}} \cdot \left( x^{p - q} \right)^{\frac{1}{pq}}. \] ### Step 3: Apply the Power Rule of Exponents Using the property of exponents that states \((x^m)^n = x^{m \cdot n}\), we can simplify further: \[ x^{(q - r) \cdot \frac{1}{qr}} \cdot x^{(r - p) \cdot \frac{1}{rp}} \cdot x^{(p - q) \cdot \frac{1}{pq}}. \] ### Step 4: Combine the Exponents Now, we can combine the exponents since they have the same base \(x\): \[ x^{\frac{q - r}{qr}} \cdot x^{\frac{r - p}{rp}} \cdot x^{\frac{p - q}{pq}} = x^{\left( \frac{q - r}{qr} + \frac{r - p}{rp} + \frac{p - q}{pq} \right)}. \] ### Step 5: Simplify the Exponent Now we need to simplify the exponent: \[ \frac{q - r}{qr} + \frac{r - p}{rp} + \frac{p - q}{pq}. \] Finding a common denominator, which is \(pqr\): \[ = \frac{(q - r)p + (r - p)q + (p - q)r}{pqr}. \] ### Step 6: Expand and Combine Terms Expanding the numerator: \[ = \frac{qp - rp + rq - pq + pr - qr}{pqr} = \frac{(qp - pq) + (rq - qr) + (pr - rp)}{pqr} = \frac{0}{pqr} = 0. \] ### Step 7: Final Result Thus, we have: \[ x^0 = 1. \] ### Final Answer: The evaluated expression is \[ \boxed{1}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Solve : (1)/(p)+(1)/(q)+(1)/(x)=(1)/(x+p+q)

If P_(r) is the coefficient of x^® in the expansion of (1 + x)^(2) (1 + (x)/(2))^(2) (1 + (x)/(2^(2)))^(2) (1 + (x)/(2^(3)))^(2)... prove that P_(r) = (2^(2))/((2^(r) -1))(P_(r-1) + P_(r-2) )and P_(4) = (1072)/(315) .

int (px^(p+2q-1)-qx^(q-1))/(x^(2p+2q)+2x^(p+q)+1) dx is equal to (1) -x^p/(x^(p+q)+1)+C (2) x^q/(x^(p+q)+1)+C (3) -x^q/(x^(p+q)+1)+C (4) x^p/(x^(p+q)+1)+C

int x^(13/2) (1+x^(5/2))^(1/2) dx = P(1+x^(5/2))^(7/2)+Q(1+x^(5/2))^(5/2) +R(1+x^(5/2))^(3/2)+C then P, Q ,R are

Consider int(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))dx =(ax^(2)+bx+c)sqrt(x^(2)+x+1)+lambda int(dx)/(sqrt(x^(2)+x+1)) Now, match the following lists and then choose the correct code. Codes: {:(,a,b,c,d),((1),q,p,s,r),((2),s,p,q,r),((3),r,q,p,s),((4),q,s,p,r):}

(3p^(2)qr^(3)) xx (- 4p^(3)q^(2)r^(2))xx (7pq^(2)r) is equal to

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

If pgtqgt0 and prlt-1ltqr , then find the value of tan^(-1)((p-q)/(1+pq))+tan^(-1)((q-r)/(1+qr))+tan^(-1)((r-p)/(1+rp))

The lines 1) (p-q)x+(q-r)y+(r-p)=0,2)(q-r)x+(r-p)y+(p-q)=0,3)(r-p)x+(p-q)y+(q-r)=0

If (logx)/(q-r)= (logy)/(r-p)=(logz)/(p-q) prove that x^(q+r).y^(r+p).z^(p+q)=x^p.y^q.z^r