Home
Class 9
MATHS
Evaluate : (4)/((216)^(-2//3))+(1)/((25...

Evaluate : `(4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(343)^{-\frac{1}{3}}} \] we will follow these steps: ### Step 1: Rewrite the bases in terms of their prime factors. 1. **Rewrite 216, 256, and 343:** - \( 216 = 6^3 \) - \( 256 = 4^4 \) - \( 343 = 7^3 \) So, we can rewrite the expression as: \[ \frac{4}{(6^3)^{-\frac{2}{3}}} + \frac{1}{(4^4)^{-\frac{3}{4}}} + \frac{2}{(7^3)^{-\frac{1}{3}}} \] ### Step 2: Apply the power of a power rule. 2. **Use the power of a power rule:** - \((a^m)^n = a^{m \cdot n}\) Applying this rule: \[ \frac{4}{6^{-2}} + \frac{1}{4^{-3}} + \frac{2}{7^{-1}} \] ### Step 3: Simplify the negative exponents. 3. **Convert negative exponents to positive:** - \(\frac{1}{a^{-n}} = a^n\) Thus, we have: \[ 4 \cdot 6^2 + 1 \cdot 4^3 + 2 \cdot 7^1 \] ### Step 4: Calculate the powers. 4. **Calculate the powers:** - \(6^2 = 36\) - \(4^3 = 64\) - \(7^1 = 7\) Now, substituting these values: \[ 4 \cdot 36 + 1 \cdot 64 + 2 \cdot 7 \] ### Step 5: Multiply and add the results. 5. **Perform the multiplications:** - \(4 \cdot 36 = 144\) - \(1 \cdot 64 = 64\) - \(2 \cdot 7 = 14\) Now, add these results: \[ 144 + 64 + 14 \] ### Step 6: Final addition. 6. **Add the results together:** - \(144 + 64 = 208\) - \(208 + 14 = 222\) Thus, the final answer is: \[ \boxed{222} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Evaluate : (1)/( ( 216)^((-2)/(3)) ) + (1)/((27) ^((-4)/(3)))

Evaluate : ((16)/(81))^(-3//4)xx((49/9)^(3//2)/((343)/(216))^(2//3))

Evaluate: 2 (1)/(2) div (3)/(4)

Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

Evaluate : [(1)/(4)]^(-2)-3(8)^((2)/(3)) xx 4^(0) + [(9)/(16)]^(-(1)/(2))

Evaluate : (ii) (2)/(3)+(-4)/(5)-(1)/(3)-(2)/(5)

Evaluate : (ii) (2)/(3)+(-4)/(5)+(1)/(3)+(2)/(5)

Evaluate ((1)/(4))^(-2)-3(8)^(2//3)xx4^(0)+((9)/(10))^(-1//2)