Home
Class 9
MATHS
Simplify : ((8)/(27))^(-1//3)xx((25)/(4)...

Simplify : `((8)/(27))^(-1//3)xx((25)/(4))^(1//2)xx((4)/(9))^(0)+((125)/(64))^(1//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{8}{27}\right)^{-\frac{1}{3}} \times \left(\frac{25}{4}\right)^{\frac{1}{2}} \times \left(\frac{4}{9}\right)^{0} + \left(\frac{125}{64}\right)^{\frac{1}{3}}\), we will follow these steps: ### Step 1: Simplify each term using properties of exponents 1. **For \(\left(\frac{8}{27}\right)^{-\frac{1}{3}}\)**: - Rewrite \(8\) and \(27\) as powers: \(8 = 2^3\) and \(27 = 3^3\). - Thus, \(\frac{8}{27} = \frac{2^3}{3^3} = \left(\frac{2}{3}\right)^3\). - Therefore, \(\left(\frac{8}{27}\right)^{-\frac{1}{3}} = \left(\left(\frac{2}{3}\right)^3\right)^{-\frac{1}{3}} = \left(\frac{2}{3}\right)^{-1} = \frac{3}{2}\). 2. **For \(\left(\frac{25}{4}\right)^{\frac{1}{2}}\)**: - Rewrite \(25\) and \(4\) as powers: \(25 = 5^2\) and \(4 = 2^2\). - Thus, \(\frac{25}{4} = \frac{5^2}{2^2} = \left(\frac{5}{2}\right)^2\). - Therefore, \(\left(\frac{25}{4}\right)^{\frac{1}{2}} = \left(\left(\frac{5}{2}\right)^2\right)^{\frac{1}{2}} = \frac{5}{2}\). 3. **For \(\left(\frac{4}{9}\right)^{0}\)**: - Any number raised to the power of \(0\) is \(1\). - Thus, \(\left(\frac{4}{9}\right)^{0} = 1\). 4. **For \(\left(\frac{125}{64}\right)^{\frac{1}{3}}\)**: - Rewrite \(125\) and \(64\) as powers: \(125 = 5^3\) and \(64 = 4^3\). - Thus, \(\frac{125}{64} = \frac{5^3}{4^3} = \left(\frac{5}{4}\right)^3\). - Therefore, \(\left(\frac{125}{64}\right)^{\frac{1}{3}} = \left(\left(\frac{5}{4}\right)^3\right)^{\frac{1}{3}} = \frac{5}{4}\). ### Step 2: Substitute back into the expression Now substituting the simplified terms back into the expression: \[ \frac{3}{2} \times \frac{5}{2} \times 1 + \frac{5}{4} \] ### Step 3: Calculate the first part Calculate \(\frac{3}{2} \times \frac{5}{2}\): \[ \frac{3 \times 5}{2 \times 2} = \frac{15}{4} \] ### Step 4: Add the two parts together Now add \(\frac{15}{4}\) and \(\frac{5}{4}\): \[ \frac{15}{4} + \frac{5}{4} = \frac{15 + 5}{4} = \frac{20}{4} = 5 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((-7)/(18)xx(15)/(-7))-(1xx1/4)+\ (1/2xx1/4)

Simplify : 27^(-(1)/(3))(27^((1)/(3))-27^((2)/(3)))

Simplify : ((25)/8xx2/5)-\ (3/5xx(-10)/9)

Simplify : ((-3)/2xx4/5)+(9/5xx(-10)/3)-(1/2xx3/4)

Evaluate : ((27)/(125))^((2)/(3))xx((9)/(25))^(-(3)/(2))

Evaluate each of the following : (i){(81)^(1//5)}^(5//2)" "(ii)(3sqrt(64))^(-2)" "(iii)9^(3//2)+3xx4^(0)-((1)/(81))^(-1//2) (vi)sqrt((1)/(9))+(0.01)^(-1//2)-(27)^(4//3)" "(v)((125)/(64))^(2//3)+((256)/(625))^(-1//4)

Simplify : (1/2xx1/4)+\ (1/2xx\ 6)

Simplify: (1/4xx2/7)-\ (5/(14)xx(-2)/3)+\ (3/7xx9/2)

Simplify : (3^(a+2)-3^(a+1))/(4xx3^(a)-3^(a))

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)