Home
Class 9
MATHS
Evaluate for x (sqrt((5)/(3)))^(x-8)=((2...

Evaluate for x `(sqrt((5)/(3)))^(x-8)=((27)/(125))^(2x-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{\frac{5}{3}})^{x-8} = \left(\frac{27}{125}\right)^{2x-3}\), we will follow these steps: ### Step 1: Rewrite the square root and the fractions in terms of exponents The square root can be expressed as an exponent of \( \frac{1}{2} \): \[ \sqrt{\frac{5}{3}} = \left(\frac{5}{3}\right)^{\frac{1}{2}} \] Thus, we can rewrite the left side of the equation: \[ \left(\frac{5}{3}\right)^{\frac{1}{2}}^{x-8} = \left(\frac{5}{3}\right)^{\frac{x-8}{2}} \] ### Step 2: Rewrite the right side Next, we simplify the right side: \[ \frac{27}{125} = \frac{3^3}{5^3} = \left(\frac{3}{5}\right)^3 \] So, we can express the right side as: \[ \left(\frac{27}{125}\right)^{2x-3} = \left(\left(\frac{3}{5}\right)^3\right)^{2x-3} = \left(\frac{3}{5}\right)^{3(2x-3)} = \left(\frac{3}{5}\right)^{6x-9} \] ### Step 3: Set the bases equal Now, we have: \[ \left(\frac{5}{3}\right)^{\frac{x-8}{2}} = \left(\frac{3}{5}\right)^{6x-9} \] We can rewrite \(\left(\frac{3}{5}\right)^{6x-9}\) as: \[ \left(\frac{5}{3}\right)^{-(6x-9)} \] Thus, we have: \[ \left(\frac{5}{3}\right)^{\frac{x-8}{2}} = \left(\frac{5}{3}\right)^{-(6x-9)} \] ### Step 4: Set the exponents equal Since the bases are equal, we can set the exponents equal to each other: \[ \frac{x-8}{2} = -(6x-9) \] ### Step 5: Solve for \(x\) Now, we solve the equation: 1. Multiply both sides by 2 to eliminate the fraction: \[ x - 8 = -2(6x - 9) \] \[ x - 8 = -12x + 18 \] 2. Rearranging gives: \[ x + 12x = 18 + 8 \] \[ 13x = 26 \] 3. Finally, divide by 13: \[ x = 2 \] ### Final Answer The value of \(x\) is \(2\). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Solve for x : sqrt(((3)/(5))^(1-2x))=4(17)/(27)

Find x, if : (sqrt((3)/(5)))^(x+1)=(125)/(27)

Find x, if : (root(3)((2)/(3)))^(x-1)=(27)/(8)

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Find (x+a)^(3)-(x-a)^(3) . Hence evaluate (sqrt(5)+sqrt(4))^(3)-(sqrt(5)-sqrt(4))^(3)

Evaluate: int4x^3sqrt(5-x^2)dx

Evaluate: intdx/((2x+3)sqrt(4x+5))

Evaluate: int1/(sqrt(8+3x-x^2))\ dx

Evaluate: lim_(x to2)(sqrt(x^(3)-x-3)-sqrt(x+1))/(x-2)

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)