Home
Class 9
MATHS
Solve for x : (root3((3)/(5)))^(2x+2)...

Solve for x :
`(root3((3)/(5)))^(2x+2)=(25)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \left(\sqrt[3]{\frac{3}{5}}\right)^{2x+2} = \frac{25}{9} \), we will follow these steps: ### Step 1: Rewrite the Cube Root We can rewrite the cube root as an exponent: \[ \sqrt[3]{\frac{3}{5}} = \left(\frac{3}{5}\right)^{\frac{1}{3}} \] Thus, the equation becomes: \[ \left(\frac{3}{5}\right)^{\frac{1}{3}(2x+2)} = \frac{25}{9} \] ### Step 2: Simplify the Left Side Using the property of exponents \( a^{m \cdot n} = a^{mn} \): \[ \left(\frac{3}{5}\right)^{\frac{2x+2}{3}} = \frac{25}{9} \] ### Step 3: Rewrite the Right Side We can express \( \frac{25}{9} \) in terms of base \( \frac{5}{3} \): \[ \frac{25}{9} = \left(\frac{5}{3}\right)^2 \] ### Step 4: Equate the Bases Now, we have: \[ \left(\frac{3}{5}\right)^{\frac{2x+2}{3}} = \left(\frac{5}{3}\right)^2 \] We can rewrite \( \left(\frac{5}{3}\right)^2 \) as \( \left(\frac{3}{5}\right)^{-2} \): \[ \left(\frac{3}{5}\right)^{\frac{2x+2}{3}} = \left(\frac{3}{5}\right)^{-2} \] ### Step 5: Set the Exponents Equal Since the bases are equal, we can set the exponents equal to each other: \[ \frac{2x+2}{3} = -2 \] ### Step 6: Solve for \( x \) Multiply both sides by 3 to eliminate the fraction: \[ 2x + 2 = -6 \] Now, subtract 2 from both sides: \[ 2x = -8 \] Finally, divide by 2: \[ x = -4 \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Solve for x : 9xx3^(x)=(27)^(2x-5)

Solve : (x+3)/(7)-(3x-5)/(5)=(2x-5)/(3)-25

" Solve : (3x)/(4)-(2x+5)/(3)=(5)/(2)

Solve : {:((34)/(3x+4y)+(15)/(3x-2y)=5),((25)/(3x-2y)-(8.50)/(3x+4y)=4.5):}

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Solve x/3 + 5/2 = - 3/2

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .

Solve : root(4)(|x-3|^(x+1))=root(3)(|x-3|^(x-2)) .

Solve : (3x)/(5) - (2(x-2))/(3) le 1