Home
Class 9
MATHS
If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4...

If `2^(x)=4^(y)=8^(z)` and `(1)/(2x)+(1)/(4y)+(1)/(8z)=4` find the value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( 2^x = 4^y = 8^z \) 2. \( \frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z} = 4 \) ### Step 1: Express all terms in terms of base 2 We know that: - \( 4 = 2^2 \) - \( 8 = 2^3 \) Thus, we can rewrite the first equation as: - \( 2^x = 2^{2y} = 2^{3z} \) Since the bases are the same, we can equate the exponents: - \( x = 2y \) - \( 2y = 3z \) ### Step 2: Express \( y \) and \( z \) in terms of \( x \) From \( x = 2y \), we can express \( y \) as: \[ y = \frac{x}{2} \] From \( 2y = 3z \), substituting \( y \): \[ 2\left(\frac{x}{2}\right) = 3z \] This simplifies to: \[ x = 3z \] Thus, we can express \( z \) as: \[ z = \frac{x}{3} \] ### Step 3: Substitute \( y \) and \( z \) into the second equation Now we substitute \( y \) and \( z \) into the equation: \[ \frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z} = 4 \] Substituting \( y \) and \( z \): \[ \frac{1}{2x} + \frac{1}{4\left(\frac{x}{2}\right)} + \frac{1}{8\left(\frac{x}{3}\right)} = 4 \] This simplifies to: \[ \frac{1}{2x} + \frac{1}{2x} + \frac{3}{8x} = 4 \] ### Step 4: Combine the fractions Combining the fractions on the left side: \[ \frac{1}{2x} + \frac{1}{2x} = \frac{2}{2x} = \frac{1}{x} \] So we have: \[ \frac{1}{x} + \frac{3}{8x} = 4 \] Finding a common denominator (which is \( 8x \)): \[ \frac{8}{8x} + \frac{3}{8x} = 4 \] This simplifies to: \[ \frac{11}{8x} = 4 \] ### Step 5: Solve for \( x \) Now, we can solve for \( x \): \[ 11 = 32x \] \[ x = \frac{11}{32} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{11}{32}} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

Show that the lines (x-4)/(1)=(y+3)/(-4)=(z+1)/7 and (x-1)/(2) =(y+1)/(-3)=(z+10)/(8) intersect. Find the coordinates of their point of intersection.

Do the lines (x+3)/(-4)=(y-4)/1=(z+1)/7 and (x+1)/(-3)=(y-1)/2=(z+10)/8 intersect? If so find the point of intersection.

The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) and (x+4)/(-1)=(y-7)/(8)=(z-5)/(4) lies in the interval

If x+z=1,y+z=1,x+y=4 then the value of y is

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

Find the value of [a] if the lines (x-2)/(3)=(y+4)/(2)=(z-1)/(5) & (x+1)/(-2)=(y-1)/(3)=(z-a)/(4) are coplanar (where [] denotes greatest integer function)

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

Show that the following pairs of lines intersect. Also find their point of intersection : (i) (x-1)/(2) = (y-2)/(3)=(z-3)/(4) and (x-4)/(5)=(y-1)/(2)=z (ii) (x-4)/(1)=(y+3)/(-4) = (z+1)/(7) and (x-1)/(2) = (y+1)/(-3)=(z+10)/(8)