Home
Class 9
MATHS
If m=root3(125) and n=root3(64) , find t...

If `m=root3(125)` and `n=root3(64)` , find the value of `m-n-(1)/(m^(2)+mn+n^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( m - n - \frac{1}{m^2 + mn + n^2} \) where \( m = \sqrt[3]{125} \) and \( n = \sqrt[3]{64} \). ### Step-by-Step Solution: 1. **Calculate \( m \) and \( n \)**: - \( m = \sqrt[3]{125} = \sqrt[3]{5^3} = 5 \) - \( n = \sqrt[3]{64} = \sqrt[3]{4^3} = 4 \) 2. **Find \( m - n \)**: - \( m - n = 5 - 4 = 1 \) 3. **Calculate \( m^2 + mn + n^2 \)**: - First, calculate \( m^2 \): \[ m^2 = 5^2 = 25 \] - Next, calculate \( mn \): \[ mn = 5 \times 4 = 20 \] - Then, calculate \( n^2 \): \[ n^2 = 4^2 = 16 \] - Now, sum them up: \[ m^2 + mn + n^2 = 25 + 20 + 16 = 61 \] 4. **Substitute values into the expression**: - Now we substitute \( m - n \) and \( m^2 + mn + n^2 \) into the expression: \[ m - n - \frac{1}{m^2 + mn + n^2} = 1 - \frac{1}{61} \] 5. **Simplify the expression**: - To simplify \( 1 - \frac{1}{61} \): \[ 1 = \frac{61}{61} \] Thus, \[ 1 - \frac{1}{61} = \frac{61}{61} - \frac{1}{61} = \frac{60}{61} \] ### Final Answer: The value of \( m - n - \frac{1}{m^2 + mn + n^2} \) is \( \frac{60}{61} \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

If m = root(3)(15) and n = root(3)(14) , find the value of m - n - (1)/(m^(2) + mn + n^(2))

The value of (m+n)^2+(m-n)^2 is:

If m = 1, n = 2 and p = -3, find the value of : 2mn^(4)-15m^(2)n+p

If m,n in N and m=(n^2-n-35)/(n-4) , then find the value of m.

If .^(m+n)P_(2)=90 and .^(m-n)P_(2)=30 , find the value of m and .

If (m-5, n + 3) = (7, 9), find the values of m and n.

If (a^(m))^(n)=a^(m).a^(n) , find the value of : m(n - 1) - (n - 1)

If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (ii) n^(2) (iii) mn

If x=2 and x=3 are roots of the equation 3x^(2)-2mx+2n=0 , find the values of m and n.

If cos theta= (2sqrt(mn))/(m+n) , find the value of sin theta (given m > n )