Home
Class 9
MATHS
In the following figure : AD bot B...

In the following figure :

`AD bot BC, AC = 26, CD = 10, BC = 42, angle DAC = x and angle B = y`.
Find the value of :
(i) cot x
(ii) `(1)/(sin^(2)y) - (1)/(tan^(2)y)`
(iii) `(6)/(cos x) - (5)/(cos y) + 8 tan y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break it down into three parts as specified in the question. ### Given: - AC = 26 - CD = 10 - BC = 42 - Angle DAC = x - Angle B = y ### Step 1: Finding cot x 1. **Identify the triangle ADC**: - In triangle ADC, AD is perpendicular to BC. - We know AC (hypotenuse) = 26 and CD (perpendicular) = 10. 2. **Calculate the length of AD using Pythagoras theorem**: - According to the Pythagorean theorem: \[ AC^2 = AD^2 + CD^2 \] - Plugging in the values: \[ 26^2 = AD^2 + 10^2 \] \[ 676 = AD^2 + 100 \] \[ AD^2 = 676 - 100 = 576 \] \[ AD = \sqrt{576} = 24 \] 3. **Calculate cot x**: - Cotangent is defined as the adjacent side over the opposite side. - In triangle ADC, cot x = AD/CD. - Thus, \[ \cot x = \frac{AD}{CD} = \frac{24}{10} = 2.4 \] ### Step 2: Finding \( \frac{1}{\sin^2 y} - \frac{1}{\tan^2 y} \) 1. **Identify triangle ADB**: - In triangle ADB, we have: - AD = 24 (perpendicular) - BD = BC - CD = 42 - 10 = 32 (base) 2. **Calculate AB using Pythagorean theorem**: - Using the Pythagorean theorem: \[ AB^2 = AD^2 + BD^2 \] - Plugging in the values: \[ AB^2 = 24^2 + 32^2 = 576 + 1024 = 1600 \] \[ AB = \sqrt{1600} = 40 \] 3. **Calculate \( \sin y \) and \( \tan y \)**: - \( \sin y = \frac{AD}{AB} = \frac{24}{40} = \frac{3}{5} \) - \( \tan y = \frac{AD}{BD} = \frac{24}{32} = \frac{3}{4} \) 4. **Calculate \( \frac{1}{\sin^2 y} - \frac{1}{\tan^2 y} \)**: - \( \sin^2 y = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \) - \( \tan^2 y = \left(\frac{3}{4}\right)^2 = \frac{9}{16} \) - Thus, \[ \frac{1}{\sin^2 y} = \frac{25}{9}, \quad \frac{1}{\tan^2 y} = \frac{16}{9} \] - Therefore, \[ \frac{1}{\sin^2 y} - \frac{1}{\tan^2 y} = \frac{25}{9} - \frac{16}{9} = \frac{9}{9} = 1 \] ### Step 3: Finding \( \frac{6}{\cos x} - \frac{5}{\cos y} + 8 \tan y \) 1. **Calculate \( \cos x \) and \( \cos y \)**: - For \( \cos x \): \[ \cos x = \frac{AD}{AC} = \frac{24}{26} = \frac{12}{13} \] - For \( \cos y \): \[ \cos y = \frac{BD}{AB} = \frac{32}{40} = \frac{4}{5} \] 2. **Substituting values into the expression**: - Calculate \( \frac{6}{\cos x} \): \[ \frac{6}{\cos x} = \frac{6}{\frac{12}{13}} = 6 \cdot \frac{13}{12} = \frac{78}{12} = 6.5 \] - Calculate \( \frac{5}{\cos y} \): \[ \frac{5}{\cos y} = \frac{5}{\frac{4}{5}} = 5 \cdot \frac{5}{4} = \frac{25}{4} = 6.25 \] - Calculate \( 8 \tan y \): \[ 8 \tan y = 8 \cdot \frac{3}{4} = 6 \] 3. **Final calculation**: - Combine all parts: \[ \frac{6}{\cos x} - \frac{5}{\cos y} + 8 \tan y = 6.5 - 6.25 + 6 = 6.25 + 6 = 12.25 \] ### Final Answers: (i) \( \cot x = 2.4 \) (ii) \( \frac{1}{\sin^2 y} - \frac{1}{\tan^2 y} = 1 \) (iii) \( \frac{6}{\cos x} - \frac{5}{\cos y} + 8 \tan y = 12.25 \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (4 MARKS QUESTIONS )|8 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1) ((1-y^(2))/(1+ y^(2)))}

In the given figure, AB||CD and BC||AD . Find the values of x, y and z

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)

In the given figure angle B = 90 ^(@) and angle ADB = x^(@) , Find : (i) sin angle CAB (ii) cos ^(2) C^(@) + sin ^(2) C^(@) (iii) tan x^(@) - cos x^(@) +3 sin x ^(@)

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

From the given figure, find : (i) cos x^(@) (ii) x^(@) (iii) (1)/(tan^(2)x^(@)) - (1)/(sin 2x^(@)) (iv) use tan x^(@) , to find the value of y