Home
Class 9
MATHS
In the figure, given below, ABC is an is...

In the figure, given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find :
(i) sin B
(ii) tan C
(iii) `sin^(2)B + cos^(2)B`
(iv) `tan C - cot B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the isosceles triangle ABC where BC = 8 cm and AB = AC = 5 cm. ### Step 1: Draw the triangle and label the points - Draw triangle ABC with AB = AC = 5 cm and BC = 8 cm. - Let D be the midpoint of BC. Therefore, BD = DC = 4 cm (since BC = 8 cm). ### Step 2: Draw the altitude from A to BC - Draw a perpendicular line from point A to line segment BC, meeting at point D. This forms two right triangles: ABD and ACD. ### Step 3: Use the Pythagorean theorem to find AD - In triangle ABD, we can apply the Pythagorean theorem: \[ AB^2 = AD^2 + BD^2 \] Substituting the known values: \[ 5^2 = AD^2 + 4^2 \] \[ 25 = AD^2 + 16 \] \[ AD^2 = 25 - 16 = 9 \] \[ AD = \sqrt{9} = 3 \text{ cm} \] ### Step 4: Find sin B - We know that: \[ \sin B = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AD}{AB} \] Substituting the values: \[ \sin B = \frac{3}{5} \] ### Step 5: Find tan C - For angle C in triangle ACD: \[ \tan C = \frac{\text{opposite}}{\text{adjacent}} = \frac{AD}{DC} \] Substituting the values: \[ \tan C = \frac{3}{4} \] ### Step 6: Find sin²B + cos²B - We know that: \[ \sin^2 B + \cos^2 B = 1 \] - To find cos B, we use: \[ \cos B = \frac{BD}{AB} = \frac{4}{5} \] - Therefore: \[ \sin^2 B + \cos^2 B = \left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = \frac{9}{25} + \frac{16}{25} = \frac{25}{25} = 1 \] ### Step 7: Find tan C - cot B - We know: \[ \cot B = \frac{1}{\tan B} = \frac{BD}{AD} = \frac{4}{3} \] - Therefore: \[ \tan C - \cot B = \frac{3}{4} - \frac{4}{3} \] - To subtract these fractions, we find a common denominator (12): \[ \tan C - \cot B = \frac{3 \times 3}{4 \times 3} - \frac{4 \times 4}{3 \times 4} = \frac{9}{12} - \frac{16}{12} = \frac{9 - 16}{12} = \frac{-7}{12} \] ### Final Answers (i) \( \sin B = \frac{3}{5} \) (ii) \( \tan C = \frac{3}{4} \) (iii) \( \sin^2 B + \cos^2 B = 1 \) (iv) \( \tan C - \cot B = -\frac{7}{12} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (4 MARKS QUESTIONS )|8 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : sin C

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : cos B

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : sin ^(2) B + cos ^(2) C

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : tan ^(2) C - sec ^(2)B +2

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : tan^2B - sec^2 B+2

ABC is an isosceles triangle with AC = BC. If A B^2=2A C^2 , prove that ABC is a right triangle.

Construct an isosceles Delta ABC such that AB = BC = 5.4 cm and angle B = 30^(@).

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In triangle ABC, given below, AB = 8 cm, BC = 6 cm and AC = 3 cm. Calculate the length of OC

In given figure, ABC is a triangle right angled at B and BD bot AC. If AD=4 cm and CD= 5 cm, then find BD and AB.