Home
Class 9
MATHS
Given : 4 sin theta = 3 cos theta, find ...

Given : `4 sin theta = 3 cos theta`, find the value of :
(i) `sin theta`
(ii) `cos theta`
(iii) `cot^(2) theta - "cosec"^(2) theta`
(iv) `4 cos^(2) theta - 3 sin^(2) theta + 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation provided: **Given:** \[ 4 \sin \theta = 3 \cos \theta \] ### Step 1: Find \(\sin \theta\) and \(\cos \theta\) 1. Rearranging the equation: \[ \frac{\sin \theta}{\cos \theta} = \frac{3}{4} \] This implies: \[ \tan \theta = \frac{3}{4} \] 2. Now, we can visualize this as a right triangle where the opposite side (perpendicular) is 3 and the adjacent side (base) is 4. 3. Using the Pythagorean theorem to find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{(3^2 + 4^2)} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 4. Now we can find \(\sin \theta\) and \(\cos \theta\): - \(\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{5}\) - \(\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{5}\) ### Step 2: Find \(\cot^2 \theta - \csc^2 \theta\) 1. First, we find \(\cot \theta\): \[ \cot \theta = \frac{1}{\tan \theta} = \frac{4}{3} \] Therefore: \[ \cot^2 \theta = \left(\frac{4}{3}\right)^2 = \frac{16}{9} \] 2. Next, we find \(\csc \theta\): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{5}{3} \] Therefore: \[ \csc^2 \theta = \left(\frac{5}{3}\right)^2 = \frac{25}{9} \] 3. Now we can calculate \(\cot^2 \theta - \csc^2 \theta\): \[ \cot^2 \theta - \csc^2 \theta = \frac{16}{9} - \frac{25}{9} = \frac{16 - 25}{9} = \frac{-9}{9} = -1 \] ### Step 3: Find \(4 \cos^2 \theta - 3 \sin^2 \theta + 2\) 1. Calculate \(\cos^2 \theta\) and \(\sin^2 \theta\): - \(\cos^2 \theta = \left(\frac{4}{5}\right)^2 = \frac{16}{25}\) - \(\sin^2 \theta = \left(\frac{3}{5}\right)^2 = \frac{9}{25}\) 2. Substitute these values into the expression: \[ 4 \cos^2 \theta - 3 \sin^2 \theta + 2 = 4 \left(\frac{16}{25}\right) - 3 \left(\frac{9}{25}\right) + 2 \] \[ = \frac{64}{25} - \frac{27}{25} + 2 \] \[ = \frac{64 - 27}{25} + 2 = \frac{37}{25} + 2 \] \[ = \frac{37}{25} + \frac{50}{25} = \frac{87}{25} \] ### Final Answers: (i) \(\sin \theta = \frac{3}{5}\) (ii) \(\cos \theta = \frac{4}{5}\) (iii) \(\cot^2 \theta - \csc^2 \theta = -1\) (iv) \(4 \cos^2 \theta - 3 \sin^2 \theta + 2 = \frac{87}{25}\)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (4 MARKS QUESTIONS )|8 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Given : 4 sintheta = 3 cos theta , find the value of: 4 cos^2theta-3sin^2 theta +2

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

Given : 4 sintheta = 3 cos theta , find the value of: cot^2 theta - "cosec"^2 theta

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 theta

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

If "cosec" theta = sqrt5 , find the value of : 2+1/(sin^2theta)-(cos^2theta)/(sin^2theta)

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is