Home
Class 9
MATHS
Solve for x, where 0 le x le 90^(@) sin^...

Solve for x, where `0 le x le 90^(@) sin^(2) x + cos^(2) 30^(@) = (5)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^2 x + \cos^2 30^\circ = \frac{5}{4} \) for \( 0 \leq x \leq 90^\circ \), we can follow these steps: ### Step 1: Substitute the value of \( \cos 30^\circ \) We know that \( \cos 30^\circ = \frac{\sqrt{3}}{2} \). Therefore, we can calculate \( \cos^2 30^\circ \): \[ \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 2: Rewrite the equation Now substitute \( \cos^2 30^\circ \) back into the equation: \[ \sin^2 x + \frac{3}{4} = \frac{5}{4} \] ### Step 3: Isolate \( \sin^2 x \) Next, we can isolate \( \sin^2 x \) by subtracting \( \frac{3}{4} \) from both sides: \[ \sin^2 x = \frac{5}{4} - \frac{3}{4} \] ### Step 4: Simplify the right side Now simplify the right side: \[ \sin^2 x = \frac{2}{4} = \frac{1}{2} \] ### Step 5: Take the square root Now, take the square root of both sides to solve for \( \sin x \): \[ \sin x = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] ### Step 6: Find the angle \( x \) We know that \( \sin 45^\circ = \frac{1}{\sqrt{2}} \). Therefore: \[ x = 45^\circ \] ### Final Answer Thus, the solution for \( x \) is: \[ x = 45^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (4 MARKS QUESTIONS )|8 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -1 ( TRIGONOMETRIC RATIOS ) (4 MARKS QUESTIONS )|8 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Solve for x, 0^@ le x le 90^@ 4 cos^(2)2x-3=0

Solve for x, 0^@ le x le 90^@ 2 sin^2x-sinx=0

Solve for 0^@ le x le 90^@ 3 tan^(2)(2x-20^@)=1

Solve for x in W, 0^@ le x le 90^@ tan^2x=3(secx-1)

Find A, if 0^(@) le A le 90^(@) and : 2 cos^(2) A - 1 = 0

Find A, if 0^(@) le A le 90^(@) and : 4 sin^(2) A - 3 = 0

solve sin^(-1) x le cos^(-1) x

Solve : x + 2 ge 0 and 2x - 5 le 0

Solve the equation for 0 le x le 2pi. sin x cos x =0

Find A, if 0^(@) le A le 90^(@) and : cos^(2) A - cos A = 0