Home
Class 11
MATHS
If theta=4530^(@), then "sin" 4530^(@) i...

If `theta=4530^(@)`, then `"sin" 4530^(@)` is :

A

`1/(2)`

B

`-(1)/(2)`

C

`1/(sqrt(2))`

D

`sqrt(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\sin 4530^\circ\), we can follow these steps: ### Step 1: Reduce the angle First, we need to reduce \(4530^\circ\) to an equivalent angle within the range of \(0^\circ\) to \(360^\circ\). We can do this by subtracting multiples of \(360^\circ\) from \(4530^\circ\). \[ 4530^\circ \div 360^\circ = 12.5833 \] This means \(4530^\circ\) is equivalent to \(12\) full rotations of \(360^\circ\) plus a remainder. To find the remainder, we calculate: \[ 12 \times 360^\circ = 4320^\circ \] \[ 4530^\circ - 4320^\circ = 210^\circ \] So, \(4530^\circ\) is equivalent to \(210^\circ\). ### Step 2: Find \(\sin 210^\circ\) Next, we need to find \(\sin 210^\circ\). We know that \(210^\circ\) is in the third quadrant, where sine values are negative. \[ \sin 210^\circ = \sin(180^\circ + 30^\circ) = -\sin 30^\circ \] ### Step 3: Calculate \(\sin 30^\circ\) We know that: \[ \sin 30^\circ = \frac{1}{2} \] ### Step 4: Apply the sign from the quadrant Since \(210^\circ\) is in the third quadrant, we have: \[ \sin 210^\circ = -\sin 30^\circ = -\frac{1}{2} \] ### Final Answer Thus, the value of \(\sin 4530^\circ\) is: \[ \sin 4530^\circ = -\frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (g)|37 Videos
  • SAMPLE QUESTION PAPER 02

    ICSE|Exercise SECTION B|19 Videos

Similar Questions

Explore conceptually related problems

If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne npi, n in Z . Then, the set of values of x, is

Without using tables, give the value of the following : sin4530^(@)

Prove that sin theta sin(60^(@)-theta) sin(60^(@)+theta)=1/4 sin3theta .

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)/(2) is

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

sin (60^(@) + theta) - sin ( 60^(@) - theta ) = sin theta.

Prove that : (sin \theta . sin(90^(@) - \theta))/(cot (90^(@) - \theta)) = 1 - sin^(2) \theta

Solve : sin 2theta+sin 4theta+sin6 theta=0,(-180^(@)le theta<= 180^(@))

(sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec"(90^(@)+theta)) .