Home
Class 11
MATHS
Using Mathematical induction, prove that...

Using Mathematical induction, prove that `10 ^(n)+3.4^(n+2)+5` is divisible by 9 for all `ninN`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (g)|37 Videos
  • SAMPLE QUESTION PAPER 02

    ICSE|Exercise SECTION B|19 Videos

Similar Questions

Explore conceptually related problems

Using mathemtical induction prove that 3^(2n + 2)- 8n - 9 is divisible by 64 for all n in N .

Using the principle of mathematical induction, prove that (2^(3n)-1) is divisible by 7 for all n in N

Using the principle of mathematical induction, prove that (2^(3n)-1) is divisible by 7 for all n in N

Using the principle of mathematical induction, prove that (2^(3n)-1) is divisible by 7 for all n in Ndot

Using the principle of mathematical induction, prove that (2^(3n)-1) is divisible by 7 for all n in Ndot

Using the principle of mathematical induction, prove that (2^(3n)-1) is divisible by 7 for all n in Ndot

Using principle of mathematical induction , prove that , (x^(2n)-y^(2n)) is divisible by (x+y) fpr all n in N .

Using principle of mathematical induction prove that x^(2n)-y^(2n) is divisible by x+y for all n belongs to Ndot

Using the principle of mathematical induction. Prove that (x^(n)-y^(n)) is divisible by (x-y) for all n in N .

Using the principle of mathematical induction. Prove that (x^(n)-y^(n)) is divisible by (x-y) for all n in N .