Home
Class 11
MATHS
Evaluate : lim(xrarr0)((1-x)^(n)-1)/(x)...

Evaluate : `lim_(xrarr0)((1-x)^(n)-1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{(1 - x)^n - 1}{x}, \] we can follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the expression: \[ \frac{(1 - 0)^n - 1}{0} = \frac{1 - 1}{0} = \frac{0}{0}. \] Since we get an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. **Hint:** If you encounter \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) when evaluating a limit, consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: \[ \lim_{x \to 0} \frac{(1 - x)^n - 1}{x} = \lim_{x \to 0} \frac{\frac{d}{dx}((1 - x)^n - 1)}{\frac{d}{dx}(x)}. \] ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator: 1. The derivative of \((1 - x)^n\) is \(n(1 - x)^{n-1} \cdot (-1) = -n(1 - x)^{n-1}\). 2. The derivative of \(-1\) is \(0\). 3. The derivative of \(x\) is \(1\). Thus, we have: \[ \lim_{x \to 0} \frac{-n(1 - x)^{n-1}}{1}. \] ### Step 4: Substitute \( x = 0 \) Again Now, we substitute \( x = 0 \) into the differentiated limit: \[ -n(1 - 0)^{n-1} = -n(1)^{n-1} = -n. \] ### Conclusion Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{(1 - x)^n - 1}{x} = -n. \] **Final Answer:** \(-n\) ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (g)|37 Videos
  • SAMPLE QUESTION PAPER 02

    ICSE|Exercise SECTION B|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xrarr0)x^x

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

Evaluate: lim_(xrarr0) ((3+x)^(1//2)-(3-x)^(1//2))/(x)

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Evaluate lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)