Home
Class 11
MATHS
Construct the truth table for the compou...

Construct the truth table for the compound proposition `(~pvvq)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the truth table for the compound proposition \( \neg p \lor q \), we will follow these steps: ### Step 1: Identify the Variables We have two variables in our proposition: \( p \) and \( q \). ### Step 2: List All Possible Truth Values Since there are two variables, we will have \( 2^2 = 4 \) combinations of truth values. The combinations for \( p \) and \( q \) are as follows: - \( p = \text{True}, q = \text{True} \) - \( p = \text{True}, q = \text{False} \) - \( p = \text{False}, q = \text{True} \) - \( p = \text{False}, q = \text{False} \) ### Step 3: Create the Table Structure We will create a table with the following columns: 1. \( p \) 2. \( q \) 3. \( \neg p \) (negation of \( p \)) 4. \( \neg p \lor q \) (the compound proposition) ### Step 4: Fill in the Truth Values for \( p \) and \( q \) Now we fill in the truth values for \( p \) and \( q \): | \( p \) | \( q \) | |----------|----------| | True | True | | True | False | | False | True | | False | False | ### Step 5: Calculate \( \neg p \) Next, we calculate the negation of \( p \): - If \( p \) is True, \( \neg p \) is False. - If \( p \) is False, \( \neg p \) is True. So, we fill in the values for \( \neg p \): | \( p \) | \( q \) | \( \neg p \) | |----------|----------|---------------| | True | True | False | | True | False | False | | False | True | True | | False | False | True | ### Step 6: Calculate \( \neg p \lor q \) Now we compute the compound proposition \( \neg p \lor q \): - The logical OR (\( \lor \)) is True if at least one of the operands is True. | \( p \) | \( q \) | \( \neg p \) | \( \neg p \lor q \) | |----------|----------|---------------|-----------------------| | True | True | False | True | | True | False | False | False | | False | True | True | True | | False | False | True | True | ### Final Truth Table The final truth table for the compound proposition \( \neg p \lor q \) is: | \( p \) | \( q \) | \( \neg p \) | \( \neg p \lor q \) | |----------|----------|---------------|-----------------------| | True | True | False | True | | True | False | False | False | | False | True | True | True | | False | False | True | True |
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (g)|37 Videos
  • SAMPLE QUESTION PAPER 02

    ICSE|Exercise SECTION B|19 Videos

Similar Questions

Explore conceptually related problems

Construct the truth table for the compound proposition q rArr [~pvvq]

Construct the truth table for p ^^ q.

Write the negative of the compound proposition p vv(~pvvq)

construct truth table for (~p)^^ q

construct truth table for p vv(~q)

construct truth table for ~(p ^^ q)

Write down the truth table for the compound statements : (~pvvq)^^(~p^^~q)

Construct the truth table for compound statement (p wedge q)wedge~p

Construct the truth table for the statement ~(p^^~q).

construct truth table for (~p)^^ (~q)