Home
Class 12
MATHS
Unit vector along the vector hat(i) + ha...

Unit vector along the vector `hat(i) + hat(j) + hat(k)` is

A

`(1)/(3) (hat(i) + hat(k) + hat(k))`

B

`(1)/(2) (hat(i) + hat(j) + hat(k))`

C

`(1)/(sqrt3) (hat(i) + hat(j) + hat(k))`

D

`(1)/(sqrt2) (hat(i) + hat(j) + hat(k))`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

Write a vector of magnitude of 18 units in the direction of the vector hat(i) - 2 hat (j) - 2 hat (k) .

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Knowledge Check

  • The vector in the direction of the vector hat(i) - 2 hat(j) + 2hat(k) that has magnitude 9 units is

    A
    `hat(i) - 2 hat(j) + 2 hat(k)`
    B
    `(hat(i) - 2 hat(j) + 2 hat(k))/(3)`
    C
    `3( hat(i)- 2 hat(j) + 2 hat(k))`
    D
    `9 ( hat(i) - 2 hat(j) + 2 hat(k))`
  • The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along the vector vec(b) = hat(i) + 2 hat(j)+ 2hat(k) is

    A
    2
    B
    `sqrt(6)`
    C
    `(2)/(3)`
    D
    `(1)/(3)`
  • Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) + hat(j) is

    A
    `hat(k)`
    B
    `- hat(k)`
    C
    `(hat(i) - hat(j))/( sqrt(2))`
    D
    `(hat(i) + hat(j))/( sqrt(2))`
  • Similar Questions

    Explore conceptually related problems

    The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

    Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

    If the vectors hat(i)+hat(j)+hat(k) makes angle alpha, beta and gamma with vectors hat(i), hat(j) and hat(k) respectively, then

    vec(P)+vec(Q) is a unit vector along x-axis. If vec(P)= hat(i)-hat(j)+hat(k) , then what is vec(Q) ?

    If the sides AB and AD of a parallelogram ABCD are represented by the vector 2 hat(i) + 4 hat(j) - 5 hat(k) and hat(i) + 2 hat(j) + 3 hat(k) , then a unit vector along vec( AC ) is