Home
Class 12
MATHS
Differentiate: tan^(-1)""(sqrt(1-x^2))/x...

Differentiate: `tan^(-1)""(sqrt(1-x^2))/x` with respect to `cos^(-1)(2xsqrt(1-x^2))` , when `x ne0`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( y_1 = \tan^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right) \) with respect to \( y_2 = \cos^{-1}(2x\sqrt{1-x^2}) \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \cos \theta \) Let \( x = \cos \theta \). Then, we have: \[ \sqrt{1 - x^2} = \sqrt{1 - \cos^2 \theta} = \sin \theta \] ### Step 2: Rewrite \( y_1 \) and \( y_2 \) Now we can rewrite \( y_1 \) and \( y_2 \): \[ y_1 = \tan^{-1}\left(\frac{\sin \theta}{\cos \theta}\right) = \tan^{-1}(\tan \theta) = \theta \quad \text{(for } -\frac{\pi}{2} < \theta < \frac{\pi}{2}\text{)} \] \[ y_2 = \cos^{-1}(2\cos \theta \sin \theta) = \cos^{-1}(\sin 2\theta) \] ### Step 3: Differentiate \( y_1 \) with respect to \( \theta \) The derivative of \( y_1 \) with respect to \( \theta \) is: \[ \frac{dy_1}{d\theta} = 1 \] ### Step 4: Differentiate \( y_2 \) with respect to \( \theta \) Using the chain rule: \[ \frac{dy_2}{d\theta} = \frac{d}{d\theta} \cos^{-1}(\sin 2\theta) = -\frac{1}{\sqrt{1 - (\sin 2\theta)^2}} \cdot \frac{d}{d\theta}(\sin 2\theta) \] \[ = -\frac{1}{\sqrt{1 - \sin^2 2\theta}} \cdot 2\cos 2\theta = -\frac{2\cos 2\theta}{\sqrt{\cos^2 2\theta}} = -2\cos 2\theta \] ### Step 5: Find \( \frac{dy_1}{dy_2} \) Now we can find \( \frac{dy_1}{dy_2} \): \[ \frac{dy_1}{dy_2} = \frac{\frac{dy_1}{d\theta}}{\frac{dy_2}{d\theta}} = \frac{1}{-2\cos 2\theta} = -\frac{1}{2\cos 2\theta} \] ### Final Answer Thus, the derivative of \( y_1 \) with respect to \( y_2 \) is: \[ \frac{dy_1}{dy_2} = -\frac{1}{2\cos 2\theta} \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .B. |10 Videos
  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .C. |11 Videos
  • SELF ASSESSMENT PAPER 05

    ICSE|Exercise SECTION .C.|12 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section -C|9 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x] with respect to x

If x in (1/(sqrt(2)),\ 1) , differentiate tan^(-1)((sqrt(1-x^2))/x) with respect to cos^(-1)(2xsqrt(1-x^2)) .

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^-1sqrt((1-x^2)/(1+x^2)) with respect to cos^-1""x^2

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to tan^(-1)(x/(sqrt(1-x^2))) .

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1){x/(1+sqrt(1-x^2))},\ -1