Home
Class 11
PHYSICS
If vec(A) + vec(B) = vec(C ) under what ...

If `vec(A) + vec(B) = vec(C )` under what condition `A^(2)+B^(2)` will be equal to `C^(2)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the condition under which the equation \( A^2 + B^2 = C^2 \) holds true, given that \( \vec{A} + \vec{B} = \vec{C} \). ### Step-by-Step Solution: 1. **Start with the given vector equation:** \[ \vec{A} + \vec{B} = \vec{C} \] 2. **Take the magnitude of both sides:** \[ |\vec{A} + \vec{B}| = |\vec{C}| \] 3. **Use the formula for the magnitude of the sum of two vectors:** \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta} \] where \( \theta \) is the angle between vectors \( \vec{A} \) and \( \vec{B} \). 4. **Substituting into the equation:** \[ \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta} = |\vec{C}| \] 5. **Square both sides to eliminate the square root:** \[ |\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta = |\vec{C}|^2 \] 6. **Rearranging the equation gives us:** \[ |\vec{A}|^2 + |\vec{B}|^2 = |\vec{C}|^2 - 2|\vec{A}||\vec{B}|\cos\theta \] 7. **To satisfy the condition \( A^2 + B^2 = C^2 \), we need:** \[ 2|\vec{A}||\vec{B}|\cos\theta = 0 \] 8. **Since \( |\vec{A}| \) and \( |\vec{B}| \) are non-zero (assuming both vectors are not zero), the only way for the product to be zero is if:** \[ \cos\theta = 0 \] 9. **This implies that:** \[ \theta = \frac{\pi}{2} \] 10. **Conclusion:** The condition under which \( A^2 + B^2 = C^2 \) is that the vectors \( \vec{A} \) and \( \vec{B} \) are perpendicular to each other.

To solve the problem, we need to find the condition under which the equation \( A^2 + B^2 = C^2 \) holds true, given that \( \vec{A} + \vec{B} = \vec{C} \). ### Step-by-Step Solution: 1. **Start with the given vector equation:** \[ \vec{A} + \vec{B} = \vec{C} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise VERY SHORT ANSWER QUESTIONS|10 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

If vec(A) xx vec(B) = 0 under the condition vec(A) = 0,vec(B) = 0 what is the angle between them ?

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

Given that vec(A)+vec(B)=vec(C ) and that vec(C ) is perpendicular to vec(A) Further if |vec(A)|=|vec(C )| , then what is the angle between vec(A) and vec(B)

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec a= vec b+ vec c , vec b X vecd= vec0 and vec c*vec d=0 then ( vec dx( vec ax vec d))/( vec d^2) is equal to (a) vec a (b) vec b (c) vec c (d) vec d

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n vec A BdotA C+ vec B Cdot vec B A+ vec C Adot vec C B is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

Let vec r=( vec axx vec b)sinx+( vec bxx vec c)cosy+2( vec cxx vec a),w h e r e vec a , vec ba n d vec c are there non-coplanar vectors. It is given that vec r is perpendicular to vec a+ vec b+ vec c , the minimum value of x^2+y^2 is equal to (A) pi^2 (B) (pi^2)/4 (C) (5pi^2)/4 (D) none of these