Home
Class 11
PHYSICS
What should be the angle between ( vec(A...

What should be the angle between `( vec(A) + vec(B)) and ( vec(A) - vec(B))` such that the magnitude of the resultant is `sqrt(3A^(2)+B^(2))` ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{A} + \vec{B} \) and \( \vec{A} - \vec{B} \) such that the magnitude of the resultant is \( \sqrt{3A^2 + B^2} \), we can follow these steps: ### Step 1: Define the vectors Let: - \( \vec{X} = \vec{A} + \vec{B} \) - \( \vec{Y} = \vec{A} - \vec{B} \) ### Step 2: Find the magnitudes of \( \vec{X} \) and \( \vec{Y} \) The magnitudes of these vectors can be calculated as follows: - \( |\vec{X}| = |\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + 2AB \cos \phi} \) - \( |\vec{Y}| = |\vec{A} - \vec{B}| = \sqrt{A^2 + B^2 - 2AB \cos \phi} \) Where \( \phi \) is the angle between vectors \( \vec{A} \) and \( \vec{B} \). ### Step 3: Use the resultant magnitude formula The magnitude of the resultant vector \( \vec{R} \) formed by \( \vec{X} \) and \( \vec{Y} \) is given by: \[ |\vec{R}| = \sqrt{|\vec{X}|^2 + |\vec{Y}|^2 + 2 |\vec{X}| |\vec{Y}| \cos \theta} \] where \( \theta \) is the angle between \( \vec{X} \) and \( \vec{Y} \). ### Step 4: Square both sides We know that the magnitude of the resultant is given as \( \sqrt{3A^2 + B^2} \). Squaring both sides gives: \[ |\vec{R}|^2 = 3A^2 + B^2 \] ### Step 5: Substitute \( |\vec{X}|^2 \) and \( |\vec{Y}|^2 \) Now substituting \( |\vec{X}|^2 \) and \( |\vec{Y}|^2 \): \[ |\vec{X}|^2 = A^2 + B^2 + 2AB \cos \phi \] \[ |\vec{Y}|^2 = A^2 + B^2 - 2AB \cos \phi \] Adding these gives: \[ |\vec{X}|^2 + |\vec{Y}|^2 = 2(A^2 + B^2) \] ### Step 6: Substitute into the resultant equation Now substituting into the resultant equation: \[ 2(A^2 + B^2) + 2 |\vec{X}| |\vec{Y}| \cos \theta = 3A^2 + B^2 \] ### Step 7: Simplifying Rearranging gives: \[ 2 |\vec{X}| |\vec{Y}| \cos \theta = 3A^2 + B^2 - 2(A^2 + B^2) \] \[ 2 |\vec{X}| |\vec{Y}| \cos \theta = A^2 - B^2 \] ### Step 8: Calculate \( |\vec{X}| |\vec{Y}| \) Now, we need to calculate \( |\vec{X}| |\vec{Y}| \): \[ |\vec{X}| |\vec{Y}| = \sqrt{(A^2 + B^2 + 2AB \cos \phi)(A^2 + B^2 - 2AB \cos \phi)} = \sqrt{(A^2 + B^2)^2 - (2AB \cos \phi)^2} \] This simplifies to: \[ |\vec{X}| |\vec{Y}| = \sqrt{(A^2 + B^2)^2 - 4A^2B^2 \cos^2 \phi} \] ### Step 9: Substitute back into the equation Substituting back gives: \[ 2 \sqrt{(A^2 + B^2)^2 - 4A^2B^2 \cos^2 \phi} \cos \theta = A^2 - B^2 \] ### Step 10: Solve for \( \cos \theta \) Now, we can isolate \( \cos \theta \): \[ \cos \theta = \frac{A^2 - B^2}{2 \sqrt{(A^2 + B^2)^2 - 4A^2B^2 \cos^2 \phi}} \] ### Step 11: Find the angle \( \theta \) Given that \( \cos \theta = \frac{1}{2} \), we find: \[ \theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^\circ \] Thus, the angle between \( \vec{A} + \vec{B} \) and \( \vec{A} - \vec{B} \) is \( 60^\circ \).

To find the angle between the vectors \( \vec{A} + \vec{B} \) and \( \vec{A} - \vec{B} \) such that the magnitude of the resultant is \( \sqrt{3A^2 + B^2} \), we can follow these steps: ### Step 1: Define the vectors Let: - \( \vec{X} = \vec{A} + \vec{B} \) - \( \vec{Y} = \vec{A} - \vec{B} \) ### Step 2: Find the magnitudes of \( \vec{X} \) and \( \vec{Y} \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise VERY SHORT ANSWER QUESTIONS|10 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

The angle between vec(A)+vec(B) and vec(A)xxvec(B) is

What is the angle be vec(a) xx vec(b) and vec(b) xx vec(a) ?

What is the angle between vec(A) and the esultant of (vec(A) + vec(B)) and (vec(A) - vec(B))

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

What is the angle between vectors vec a\ a n d\ vec b with magnitudes 2 and 3 respectively ? Given vec adot vec b=sqrt(3) .

Find the angle between vec(a) and vec(b) if |vec(a)| = 4, |vec(b)|= 2 sqrt3 and |vec(a) xx vec(b)| = 12

The angle between vectors vec(A) and vec(B) is 60^@ What is the ratio vec(A) .vec(B) and |vec(A) xxvec(B)|

Find the angle between two vectors vec a and vec b , if | vec a xx vec b|= vec a . vec b .