Home
Class 11
PHYSICS
Find the direction cosines of the vecto...

Find the direction cosines of the vector `vec(F) = 4hat(i) + 3hat(j) + 2 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the direction cosines of the vector \(\vec{F} = 4\hat{i} + 3\hat{j} + 2\hat{k}\), we can follow these steps: ### Step 1: Identify the components of the vector The vector \(\vec{F}\) can be expressed in terms of its components: - \(F_x = 4\) (coefficient of \(\hat{i}\)) - \(F_y = 3\) (coefficient of \(\hat{j}\)) - \(F_z = 2\) (coefficient of \(\hat{k}\)) ### Step 2: Calculate the magnitude of the vector The magnitude (or modulus) of the vector \(\vec{F}\) is given by the formula: \[ |\vec{F}| = \sqrt{F_x^2 + F_y^2 + F_z^2} \] Substituting the values: \[ |\vec{F}| = \sqrt{4^2 + 3^2 + 2^2} = \sqrt{16 + 9 + 4} = \sqrt{29} \] ### Step 3: Calculate the direction cosines The direction cosines are defined as: - \(\cos \alpha = \frac{F_x}{|\vec{F}|}\) - \(\cos \beta = \frac{F_y}{|\vec{F}|}\) - \(\cos \gamma = \frac{F_z}{|\vec{F}|}\) Now, substituting the values we calculated: 1. For \(\cos \alpha\): \[ \cos \alpha = \frac{F_x}{|\vec{F}|} = \frac{4}{\sqrt{29}} \] 2. For \(\cos \beta\): \[ \cos \beta = \frac{F_y}{|\vec{F}|} = \frac{3}{\sqrt{29}} \] 3. For \(\cos \gamma\): \[ \cos \gamma = \frac{F_z}{|\vec{F}|} = \frac{2}{\sqrt{29}} \] ### Final Result The direction cosines of the vector \(\vec{F}\) are: - \(\cos \alpha = \frac{4}{\sqrt{29}}\) - \(\cos \beta = \frac{3}{\sqrt{29}}\) - \(\cos \gamma = \frac{2}{\sqrt{29}}\)

To find the direction cosines of the vector \(\vec{F} = 4\hat{i} + 3\hat{j} + 2\hat{k}\), we can follow these steps: ### Step 1: Identify the components of the vector The vector \(\vec{F}\) can be expressed in terms of its components: - \(F_x = 4\) (coefficient of \(\hat{i}\)) - \(F_y = 3\) (coefficient of \(\hat{j}\)) - \(F_z = 2\) (coefficient of \(\hat{k}\)) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise SELECTED PROBLEMS (FROM VECTOR ADDITION ) |14 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

Find the direction cosines of the vector hat i+2 hat j+3 hat k .

Find the direction cosines of the vector hat i+2 hat j+3 hat kdot

Write the direction cosines of the vector vec r=6 hat i-2 hat j+3 hat kdot

Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

Find the direction cosines of the following vectors: 2 hat i+2 hat j- hat k 6 hat i-2 hat j-3 hat k 3 hat i-4 hat k

Find the direction cosines of the following vectors: 2 hat i+2 hat j- hat k 6 hat i-2 hat j-3 hat k 3 hat i-4 hat k

Find the direction cosines of the following vectors: 2 hat i+2 hat j- hat k 6 hat i-2 hat j-3 hat k 3 hat i-4 hat k

Find the direction cosines of the following vectors: 2 hat i+2 hat j- hat k 6 hat i-2 hat j-3 hat k 3 hat i-4 hat k

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .