Home
Class 11
PHYSICS
Evaluate the following : int(0)^(pi//4...

Evaluate the following :
`int_(0)^(pi//4) " tan x dx"`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\frac{\pi}{4}} \tan x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the tangent function in terms of sine and cosine: \[ I = \int_{0}^{\frac{\pi}{4}} \tan x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//2) cos^(2) " x dx"

Evaluate the following integral: int_0^(pi//4)tan^2x\ dx

Evaluate the following integral: int_0^(pi//4)tan^2x\ dx

Evaluate the following : int_(0)^(pi)(dx)/(1+sinx)

Evaluate the following integral: int_0^(pi//4)(tan^3x)/(1+cos2x)dx

Evaluate the following integral: int_0^(pi//4)e^x sin x\ dx

int_(0)^( pi/4)tan^(3)dx

Evaluate the following integral: int_0^(pi//2)(tan^7x)/(tan^7x+cot^7x)dx

Evaluate the following integrals: int_0^(pi//2)(tanx)/(1+m^2tan^2x)dx

Evaluate the following integral: int_0^(2pi)|sin x|dx