Home
Class 11
PHYSICS
Evaluate the following : int (-5)^(5) "...

Evaluate the following :
`int _(-5)^(5) " x dx"`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{-5}^{5} x \, dx\), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{-5}^{5} x \, dx \] ### Step 2: Find the antiderivative The antiderivative of \(x\) is: \[ \frac{x^2}{2} \] ### Step 3: Apply the limits of integration Now, we apply the limits from \(-5\) to \(5\): \[ I = \left[ \frac{x^2}{2} \right]_{-5}^{5} \] ### Step 4: Substitute the upper limit First, substitute the upper limit \(5\): \[ \frac{5^2}{2} = \frac{25}{2} \] ### Step 5: Substitute the lower limit Next, substitute the lower limit \(-5\): \[ \frac{(-5)^2}{2} = \frac{25}{2} \] ### Step 6: Calculate the result Now, we subtract the lower limit result from the upper limit result: \[ I = \frac{25}{2} - \frac{25}{2} = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{-5}^{5} x \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(4)^(5) 1dx

Evaluate the following: int_1^5 |x-4|dx

Evaluate the following: int_0^8 |x-5|dx

Evaluate the following Integrals. int tan^5 x dx

Evaluate the following integral: int_(-1)^1 5x^4sqrt(x^5+1)dx\

Evaluate the following integral: int_2^8|x-5|dx

Evaluate the following: int(3xsqrt(x)+4sqrt(x)+5)\ dx (ii) int(2^x+5/x-1/(x^(1//3)))\ dx

Evaluate: int _(4) ^(5) | x-5| dx

Evaluate each of the following integral: int_0^picos^5x\ dx

Evaluate each of the following integrals: (i) intx^4\ dx (ii) intx^(5//4)\ dx (iii) int1/(x^5)\ dx (iv) int1/(x^(3//2))\ dx