Home
Class 11
PHYSICS
Evaluate the following : int(0)^(pi//2)...

Evaluate the following :
`int_(0)^(pi//2) cos^(2) " x dx"`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \), we can follow these steps: ### Step 1: Use the Trigonometric Identity We can use the trigonometric identity for \( \cos^2 x \): \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi/2) cos 2x dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)dx

Evaluate the following : int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

Evaluate the following integral: int_0^(pi//2)x^2cos2x\ dx

Integrate the following functions int_(0)^(pi//2) " cos x dx"

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(sinx+cos x)dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(sin x cos x)/(cos^2x+3cos x+2)dx