Home
Class 11
PHYSICS
Evaluate the following : int(-pi//2)^(...

Evaluate the following :
`int_(-pi//2)^(+pi//2) " sin 2x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx \] ### Step 2: Find the antiderivative The antiderivative of \( \sin(2x) \) can be found using the formula: \[ \int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \] where \( k = 2 \) in our case. Thus, we have: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] ### Step 3: Apply the limits of integration Now we will evaluate the definite integral using the antiderivative we found: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx = \left[-\frac{1}{2} \cos(2x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \] ### Step 4: Substitute the limits Now we will substitute the upper and lower limits into the antiderivative: 1. For the upper limit \( x = \frac{\pi}{2} \): \[ -\frac{1}{2} \cos(2 \cdot \frac{\pi}{2}) = -\frac{1}{2} \cos(\pi) = -\frac{1}{2}(-1) = \frac{1}{2} \] 2. For the lower limit \( x = -\frac{\pi}{2} \): \[ -\frac{1}{2} \cos(2 \cdot -\frac{\pi}{2}) = -\frac{1}{2} \cos(-\pi) = -\frac{1}{2}(-1) = \frac{1}{2} \] ### Step 5: Calculate the result Now we can find the value of the definite integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx = \frac{1}{2} - \frac{1}{2} = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM SCALAR PRODUCT AND VECTOR PRODUCT |20 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate the following integral: int_(-pi//4)^(pi//2)"sin" xdx

Evaluate the following integral: int_(-pi//2)^(pi//2)sin^9x\ dx

Evaluate the following integral: int_(-pi//2)^(pi//2)sin^9x\ dx

Evaluate the following integral: int_(-pi//2)^(pi//2)sin^3x\ dx

Evaluate the following integral: int_(-pi//4)^(pi//4)sin^2x\ dx

Evaluate the following integral: int_(-pi//2)^(pi//2)(sin|x|+"cos"|x|)dx

int_(-pi/2)^(pi/2) |sin x| dx

Evaluate the following : int_(0)^(pi//2) cos^(2) " x dx"

Evaluate the following integral: int_(-pi//2)^(pi//2)(2sin|x|+cos x)dx