Home
Class 11
PHYSICS
A wire of length L and cross-sectional a...

A wire of length L and cross-sectional area A is made of a material of Young's modulus Y. IF the wire is stretched by an amount x, the workdone is

A

`(Y Ax^(2))/(2L)`

B

`(Y A x)/(2L^(2))`

C

`(Y A x)/(2L)`

D

`(Y A x^(2))/(L )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the work done in stretching a wire of length \( L \) and cross-sectional area \( A \) made of a material with Young's modulus \( Y \) by an amount \( x \), we can follow these steps: ### Step 1: Understand Young's Modulus Young's modulus \( Y \) is defined as the ratio of stress to strain: \[ Y = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta L/L} \] Where: - \( F \) is the force applied, - \( A \) is the cross-sectional area, - \( \Delta L \) is the change in length (which is \( x \)), - \( L \) is the original length of the wire. ### Step 2: Rearranging Young's Modulus From the definition of Young's modulus, we can rearrange the equation to find the force \( F \): \[ F = Y \cdot \frac{A \cdot x}{L} \] ### Step 3: Work Done in Stretching the Wire The work done \( W \) in stretching the wire through a distance \( x \) can be expressed as: \[ dW = F \cdot dx \] Substituting the expression for \( F \): \[ dW = \left( Y \cdot \frac{A \cdot x}{L} \right) dx \] ### Step 4: Integrating to Find Total Work Done To find the total work done in stretching the wire from \( 0 \) to \( x \), we need to integrate \( dW \): \[ W = \int_{0}^{x} Y \cdot \frac{A \cdot x}{L} \, dx \] Since \( Y \), \( A \), and \( L \) are constants, we can take them out of the integral: \[ W = Y \cdot \frac{A}{L} \int_{0}^{x} x \, dx \] ### Step 5: Evaluating the Integral The integral of \( x \) is: \[ \int x \, dx = \frac{x^2}{2} \] Evaluating this from \( 0 \) to \( x \): \[ W = Y \cdot \frac{A}{L} \cdot \left[ \frac{x^2}{2} - 0 \right] = Y \cdot \frac{A}{L} \cdot \frac{x^2}{2} \] ### Step 6: Final Expression for Work Done Thus, the total work done in stretching the wire by an amount \( x \) is: \[ W = \frac{Y A x^2}{2L} \] ### Summary The work done in stretching the wire is given by: \[ W = \frac{Y A x^2}{2L} \]
Promotional Banner

Topper's Solved these Questions

  • COMPETITION CARE UNIT

    ICSE|Exercise PROPERTIES OF MATTER (SURFACE TENSION ) |23 Videos
  • COMPETITION CARE UNIT

    ICSE|Exercise PROPERTIES OF MATTER (CALORIMETRY, CHANGE OF STATE & KINETIC THEORY OF GASES ) |30 Videos
  • COMPETITION CARE UNIT

    ICSE|Exercise GRAVITATION |25 Videos
  • CIRCULAR MOTION

    ICSE|Exercise MODULE 2 (FROM ROTATIONAL KINETIC ENERGY , WORK ,POWER)|24 Videos
  • DIMENSIONS

    ICSE|Exercise SELECTED PROBLEMS (FROM CONVERSIONS OF ONE SYSTEMS OF UNITS INTO ANOTHER)|9 Videos
ICSE-COMPETITION CARE UNIT-PROPERTIES OF MATTER (ELASTICITY )
  1. A ball falling in a lake of depth 200m shown 0.1% decrease in its volu...

    Text Solution

    |

  2. Two wires A and B are of the same maeterial. Their lengths are in the ...

    Text Solution

    |

  3. On stretching a wire, the elastic energy stored per unit volume is,

    Text Solution

    |

  4. A cube at temperature 0^(@) C is compressed equal from all sides by an...

    Text Solution

    |

  5. Which of the following affecs the elasticity of a substance

    Text Solution

    |

  6. A long spring is stretched by 2 cm and the potential energy is V. IF t...

    Text Solution

    |

  7. Energy of a stretched wire is

    Text Solution

    |

  8. An indian ruber cord L meter long and area of cross-secion A metre is...

    Text Solution

    |

  9. Two rods A and B of the same material and length have radii r(1) and ...

    Text Solution

    |

  10. A spherical ball contracts in volume by 0.01 % when subjected to a nor...

    Text Solution

    |

  11. A wire is stretched by 10 mm when it is pulled bya certain force. Anot...

    Text Solution

    |

  12. An iron of length l and having cross-section A is heated form 0^(@)C t...

    Text Solution

    |

  13. The normal density of gold is rho and its bulk modulus is K. The incr...

    Text Solution

    |

  14. A steel wire of length 20 cm and uniform cross section 1 mm^(2) is tie...

    Text Solution

    |

  15. Let Y(g) and Y(r ) represent Young's modulus for glass and rubber resp...

    Text Solution

    |

  16. The Young's modulus of brass and steel are respectively 10 xx 10^(10) ...

    Text Solution

    |

  17. One end of a uniform wire of length L and of weight W is attached rigi...

    Text Solution

    |

  18. A wire of length L and cross-sectional area A is made of a material of...

    Text Solution

    |

  19. When an elastic material with Young's modulus Y is subjected to a stre...

    Text Solution

    |

  20. The following four wires of length L and radius r are made of the same...

    Text Solution

    |