Home
Class 11
MATHS
c is any real number and c ne 0. Prove t...

c is any real number and `c ne 0`. Prove that `abs(f(c) - f(-c)) = 2`, where f(x) = `absx / x`

Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos
  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos

Similar Questions

Explore conceptually related problems

Let the functions f and g on the set of real numbers RR be defined by, f(x)= cos x and g(x) =x^(3) . Prove that, (f o g) ne (g o f).

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < de, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is

If f(x)=(|x|)/(x) and c be a non-zero real number, show that |f(c)-f(-c)|=2.

Let f(x)=ax^(2)+bx+c , a ne 0 , a , b , c in I . Suppose that f(1)=0 , 50 lt f(7) lt 60 and 70 lt f(8) lt 80 . The least value of f(x) is

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c)(f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area bounded by f(x)=(x^(3))/(3)-x^(2)+a and the straight lines x=0, x=2, and the x-axis is minimum, then the value of a is

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c) (f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area enclosed by f(x)= sin x + cos x, y=a between two consecutive points of extremum is minimum, then the value of a is

Let f(x)=Ax^2+Bx+C where A, B, C are three real constants, if f(x) is integer for integral values of x, then prove that each of 2A, (A+B) and C is an integer. Conversely, if each of 2A, (A+B) , C is an integer then f(x) will be integer for integral values of x.

Let f(x)=a x^2+bx +c a ,b ,c in R . If f(x) takes real values for real values of x and non-real values for non-real values of x , then (a) a=0 (b) b=0 (c) c=0 (d) nothing can be said about a ,b ,c .

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c) (f(c)-f(x))dx+int_(c)^(b) (f(c))dx =f(c)(c-a)-int_(a)^(c) (f(x))dx+int_(a)^(b) (f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b) (f(x))dx-int_(a)^(c) (f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . The value of the parameter a for which the area of the figure bounded by the abscissa axis, the graph of the function y=x^(3)+3x^(2)+x+a , and the straight lines, which are parallel to the axis of ordinates and cut the abscissa axis at the point of extremum of the function, which is the least, is

Let f(x+y) = f(x) . f(y) for all x,y where f(0) ne 0. If f(5) =2 and f'(0) =3 , then f'(5) is equal to

PATHFINDER-FUNCTIONS-QUESTION BANK
  1. Without using graph paper the graph of the function y = f(x) = abs(x -...

    Text Solution

    |

  2. Without using graph paper draw a sketch graph of the function f(x) = 2...

    Text Solution

    |

  3. Find the domain of the function F(x) = tan^-1 sqrt(x(x + 1)) + sin^-1 ...

    Text Solution

    |

  4. Find the range of the function f(x) = (sec^2x - tan x)/(sec^2 x + tan ...

    Text Solution

    |

  5. Find the domain of function f(x) = cos^-1 ((2 - absx)/4) + 1/log(3 - x...

    Text Solution

    |

  6. If 2f(x) + 3f(-x) = 15 - 4x for all real values of x , then show that ...

    Text Solution

    |

  7. If 2f(x - 1) - f((1-x)/x) = x find f(x).

    Text Solution

    |

  8. Find the inverse function of the function f(x) = [4 - (x - 7)^3]^(1/5)...

    Text Solution

    |

  9. If f(n + 1) = (2f(n) + 1)/2 , n = 1,2,3,....... and f(1) = 2, then fin...

    Text Solution

    |

  10. f(x) = (alpha x)/(x + 1) (x ne -1), then for what value of alpha , f{f...

    Text Solution

    |

  11. Find the range of f(x) = ^(7 - x) P(x - 3).

    Text Solution

    |

  12. Find the inverse function of the function f(x) = 2^(x(x - 1)) (x gt 0)...

    Text Solution

    |

  13. If f(x) =log e (1 + x)/(1 - x) and g(x) = (3x + x^3)/(1 + 3x^2), then ...

    Text Solution

    |

  14. If f(x) = ax^2 + bx + c find a, b so that f(x + 1) = f(x) + x + 1 may ...

    Text Solution

    |

  15. c is any real number and c ne 0. Prove that abs(f(c) - f(-c)) = 2, whe...

    Text Solution

    |

  16. Find the range of f(x) =3 sin sqrt(pi^2/16 - x^2).

    Text Solution

    |

  17. 2f(1/x) - f(x) = 5x , find the value of f(x + 1/x).

    Text Solution

    |

  18. Find the Domain of definition of the function f(x) = sqrt(log10 ((3x -...

    Text Solution

    |

  19. If g(x) = 1/x^2, show that , g(x) - g(x + 1) = (2x + 1)/(x^2 (x + 1)^2...

    Text Solution

    |

  20. Find the domain of definition of the function f(x) = log10 log10 log10...

    Text Solution

    |