Home
Class 11
MATHS
lim(x to 0)(e^(2x)-1)/(sin 3x) = ?...

`lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos
  • MATHEMATICAL REASONING

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x to 0)(4^(x)-1)/(sin2x)

Evaluate: lim_(x rarr 0) (e^(2x)-1)/(sin3x)

lim_(x to 0) (e^(x^2) - 1)/sin^2x

Lim_(x to 0) (e^-x -1)/x is

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

lim_(x to 0) (e^(13x)-e^(7x))/x

lim_(x->0)(e^(5x) - 1)/(3x)

If lim _(xto0)(f(x))/(sin ^(2)x) = 8, lim _(xto0) (g(x))/( 2 cos x-ye ^(x) + x^(3) +x-2)=lamda and lim _(xto0) (1+2f(x)) ^((1)/(g(x)))=1/e, then lamda=

Evaluate: lim_(x to 0)(e^(4x)-e^(-x))/(x)

The value of lim_(x rarr 0) (e^(x2)-1)/(x) is