Home
Class 11
MATHS
Lim(n to oo) (1^2+2^2+ ... +n^2)/n^3 =...

`Lim_(n to oo) (1^2+2^2+ ... +n^2)/n^3 =`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos
  • MATHEMATICAL REASONING

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

Find the value of the limit lim_(nrarroo)(1^2+2^2+...+n^2)/n^3

Evaluate: ("lim")_(n to oo)((1^2+2^2+3^3++n^2)(1^3+2^3+3^3++n^3))/(1^6+2^6+3^6++n^6)

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

Evaluate the following limits : lim_(nrarrinfty)(1^2+2^2+3^2+...+n^2)/(2n^3)

lim_(n to oo) (5^n+3^n)/(5^n-3^n) =

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(n to oo)(1^(9)+2^(9)+3^(9)+...+n^(9))/(n^(10))

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

The value of lim_(n to oo) (1^(p)+2^(p)+3^(p)+…+n^(p))/(n^(p+1)) is -