Home
Class 11
MATHS
The value of Lim(n to oo) n!/((n+1)!-n...

The value of `Lim_(n to oo) n!/((n+1)!-n!)`

A

a) 0

B

b) 1

C

c) -1

D

d) 2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos
  • MATHEMATICAL REASONING

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

The value of lim_(n to oo) (1^(p)+2^(p)+3^(p)+…+n^(p))/(n^(p+1)) is -

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -