Home
Class 11
MATHS
lim(x to 1) (x^4+4x^3-5x^2)/(x-1)...

`lim_(x to 1) (x^4+4x^3-5x^2)/(x-1)`

Text Solution

Verified by Experts

`lim_(x to 1) (x^4+4x^3-5x^2)/(x-1)`
=`lim_(x to 1) (x^2(x^2+4x-5))/(x-1)`
=`lim_(x to 1) (x^2(x+5)(x-1))/(x-1) = lim_(x to 1) x^2(x+5x)`
=`(1)^2(1+5) = 6` Ans.
Promotional Banner

Topper's Solved these Questions

  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos
  • MATHEMATICAL REASONING

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 1)((x^2-3x+2)/(x^3-4x+3))

lim_(x to 1/2) (2x^2-3x+1)/(2x-1) = ?

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

lim_(xto-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^(2)) is equal to (a) 1 (b) (2/3)^(1/2) (c) (3/2)^(1/2) (d) e^(1/2)

Evaluate : underset(xrarr1)"lim"(x^(4)+4x^(3)-5x^(2))/(x-1)

Prove that, lim_(xtooo)(4x^(3)-5x^(2)+6x+9)/(3x^(4)+4x^(2)-11)=0

The value of lim_(x to 0) (10^(x)-2^(x)-5^(x)+1)/(x log(1+x)) is -

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate: lim_(x to 0)(4^(x)-1)/(sin2x)

Prove that lim_(x rarr 1) (4^(x)-4)/(x-1)=8log2