Home
Class 11
MATHS
Prove that lim(x to 0) (sqrt(a+x)-sqrta)...

Prove that `lim_(x to 0) (sqrt(a+x)-sqrta)/x = 1/(2sqrta) ( a ne o)`

Promotional Banner

Topper's Solved these Questions

  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos
  • MATHEMATICAL REASONING

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

Prove that: lim_(x to 0)(sqrt(1+x)-1)/(log(1+x))=(1)/(2)

Prove that, lim_(xtooo)sqrt(x)(sqrt(x+3)-sqrtx)=(3)/(2)

Evaluate lim_(x->0)(sqrt(2+x)-sqrt(2))/x

Prove that: lim_(x to0)log(1+sinx)/(x)=1

Prove that: lim_(xrarr0)tanx/x=1

Prove that lim_(xto0)(xsqrt(2ax-x^(2)))/((sqrt(8ax-4x^(2))+sqrt(8ax))^(3))=(1)/(128a)

lim_(x to 0) (pi^(x)-1)/(sqrt(1+x)-1)

Prove that lim_(x to 0) sinx/(log_e (1+x)^(1/2)) = 2

Prove that: lim_(x rarr 0)(sinlog(1+x))/(x)=1

lim_(x to 0) (e^(x^2) - 1)/sin^2x