Home
Class 11
MATHS
Find Lim(x to 1^+) (1/(x-1)) = ?...

Find `Lim_(x to 1^+) (1/(x-1)) = ?`

Promotional Banner

Topper's Solved these Questions

  • LIMIT, CONTINUITY AND DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|293 Videos
  • MATHEMATICAL REASONING

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

The value of [lim_(x to 0)((sinx)/(x))^(sinx/(x-sinx))+lim_(x to 1)x^(1/(1-x))] is

lim_(x to 1)((1+x)/(2+x))^(1/2)

Find the following limits: (i) lim_(xto0) (1-x)^((1)/(x))" "(ii) lim_(xto1) (1+log_(e)x)^((1)/(log_(e)x)) (iii)lim_(xto0) (1+sinx)^((1)/(x))

Evaluate the following limits: lim_(x to 0)[(1)/(x)-log(1+x)/(x^(2))]

lim_(x rarr 1) x^(1//1-x) is

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)

Evaluate lim_(xto0^(+)) (1)/(x)cos^(-1)((sinx)/(x)) .

Evaluate lim_(xto1^(+)) 2^(-2^((1)/(1-x))).