Home
Class 11
MATHS
Let f(x) = log(100X)(2log10X + 2)/(-X) a...

Let `f(x) = log_(100X)(2log_10X + 2)/(-X)` and g(X) = {X}, where {x} denotes the fractional part of x. If the function fog(x) exists then the domain of f(x) contains

A

(0, 1/100)

B

(1/100, 1/10)

C

(1/10, 1)`

D

`(1, infty)`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    PATHFINDER|Exercise QUESTION BANK|81 Videos
  • FUNCTIONS

    PATHFINDER|Exercise QUESTION BANK|66 Videos

Similar Questions

Explore conceptually related problems

Period of f(x)=cos2pi{x} is , where {x} denote the fractional part of x)

If f'(x)=|x|-{x} where {x} denotes the fractional part of x, then f(x) is decreasing in (-1/2, k) , find k.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

If f(x)={(sin{cosx}/(x-pi/2), x ne pi/2),(1, x=pi/2):} , where {.} denotes the fractional part of x, then f(x) is :

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

If f(x) = (1−x)^(1/2) and g(x)=ln(x) then the domain of (gof)(x) is

Find the domain and range of f(x)=log{x},w h e r e{} represents the fractional part function).

Let f(x)=min({x},{-x})AA epsilonR , where {.} denotes the fractional part of x . Then int_(-100)^(100) f(x)dx is equal to

Discuss the continuity of f(x)={(x{x}+1 ,, 0lt=x<1),(2-{x} ,, 1lt=x<2):} where {x} denotes the fractional part function.

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

PATHFINDER-FUNCTION-QUESTION BANK
  1. Let g(x) be a function defined on [-1, 1] so that the area of the equi...

    Text Solution

    |

  2. Let f(x) = x/(1 + x^2) and g(x) = e^(-x)/(1+[x]), where [x] is the gre...

    Text Solution

    |

  3. Let f(x) = log(100X)(2log10X + 2)/(-X) and g(X) = {X}, where {x} denot...

    Text Solution

    |

  4. If y = f(x) = (x+2)/(x-1) then

    Text Solution

    |

  5. Let f(x) be a real valued function satisfying the functional equation ...

    Text Solution

    |

  6. Let f(x) be a real valued function satisfying the functional equation ...

    Text Solution

    |

  7. Let f(x) be a real valued function satisfying the functional equation ...

    Text Solution

    |

  8. Let (x) f1(x)-2f2(x) where f1(x) = "min"{x^2, |x|} "for"-1 le x le...

    Text Solution

    |

  9. Let (x) f1(x)-2f2(x) where f1(x) = "min"{x^2, |x|} "for"-1 le x le...

    Text Solution

    |

  10. Let (x) f1(x)-2f2(x) where f1(x) = "min"{x^2, |x|} "for"-1 le x le...

    Text Solution

    |

  11. Let f(x) = 1/2[f(xy) + f(x/y)] for x,y in R^+ such that f(1) = 0 f'(...

    Text Solution

    |

  12. Let f(x) = 1/2[f(xy) + f(x/y)] for x,y in R^+ such that f(1) = 0 f'(...

    Text Solution

    |

  13. Let f(x) = 1/2[f(xy) + f(x/y)] for x,y in R^+ such that f(1) = 0 f'(...

    Text Solution

    |

  14. For all real values of x and y, 2f(x) cosy = f(x + y) + f(x - y) and b...

    Text Solution

    |

  15. For all real values of x and y, 2f(x) cosy = f(x + y) + f(x - y) and b...

    Text Solution

    |

  16. For all real values of x and y, 2f(x) cosy = f(x + y) + f(x - y) and b...

    Text Solution

    |

  17. Match List - I with List-II

    Text Solution

    |

  18. Match List - I with List-II

    Text Solution

    |

  19. Let f(x) be function such that f(x + 2)- 5f(x + 1) + 6f(x) = 0 AA x in...

    Text Solution

    |

  20. Match List - I with List-II

    Text Solution

    |