Home
Class 12
MATHS
if lim(x->0)(ptanqx^2-3cos^2x+4)^(1/(3x^...

if `lim_(x->0)(ptanqx^2-3cos^2x+4)^(1/(3x^2))=e^(5/3)`

A

`p=sqrt2,q= (1)/(2 sqrt2)`

B

`=(1)/(sqrt2), q=2 sqrt2`

C

`p=1,q=2`

D

`p=2,q=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by: \[ \lim_{x \to 0} \left( p \tan(q x^2) - 3 \cos^2(x) + 4 \right)^{\frac{1}{3x^2}} = e^{\frac{5}{3}} \] we will follow these steps: ### Step 1: Analyze the limit expression As \( x \to 0 \), we can evaluate the expression inside the limit. We know that: - \( \tan(q x^2) \approx q x^2 \) (since \( \tan(x) \approx x \) for small \( x \)) - \( \cos^2(x) \approx 1 \) (since \( \cos(x) \approx 1 \) for small \( x \)) Substituting these approximations into the limit gives: \[ p \tan(q x^2) - 3 \cos^2(x) + 4 \approx p(q x^2) - 3(1) + 4 = pq x^2 + 1 \] ### Step 2: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \left( pq x^2 + 1 \right)^{\frac{1}{3x^2}} \] ### Step 3: Identify the form of the limit As \( x \to 0 \), \( pq x^2 + 1 \) approaches \( 1 \), and thus we have the indeterminate form \( 1^\infty \). We can use the property of limits: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{\lim_{x \to 0} g(x)(f(x) - 1)} \] Here, let \( f(x) = pq x^2 + 1 \) and \( g(x) = \frac{1}{3x^2} \). ### Step 4: Calculate \( g(x)(f(x) - 1) \) We find: \[ f(x) - 1 = pq x^2 \] Thus, \[ g(x)(f(x) - 1) = \frac{1}{3x^2}(pq x^2) = \frac{pq}{3} \] ### Step 5: Evaluate the limit Now we can evaluate the limit: \[ \lim_{x \to 0} g(x)(f(x) - 1) = \frac{pq}{3} \] So we have: \[ \lim_{x \to 0} \left( pq x^2 + 1 \right)^{\frac{1}{3x^2}} = e^{\frac{pq}{3}} \] ### Step 6: Set the limit equal to the given expression We know from the problem statement that this limit equals \( e^{\frac{5}{3}} \): \[ e^{\frac{pq}{3}} = e^{\frac{5}{3}} \] ### Step 7: Equate the exponents Since the bases are the same, we can equate the exponents: \[ \frac{pq}{3} = \frac{5}{3} \] ### Step 8: Solve for \( pq \) Multiplying both sides by 3 gives: \[ pq = 5 \] ### Step 9: Find possible values of \( p \) and \( q \) We need to find pairs \( (p, q) \) such that \( pq = 5 \). Possible pairs include: - \( (1, 5) \) - \( (5, 1) \) - \( (2, 2.5) \) - \( (2.5, 2) \) ### Conclusion The values of \( p \) and \( q \) must satisfy \( pq = 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)x^3cos(2/x) =

Evaluate lim_(x->0^-) (x^2-3x+2)/(x^3-2x^2)

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

lim_(x->0)(e^(5x) - 1)/(3x)

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. if lim(x->0)(ptanqx^2-3cos^2x+4)^(1/(3x^2))=e^(5/3)

    Text Solution

    |

  2. lim(x->oo) 2(sqrt(25x^2+x)-5x) is:

    Text Solution

    |

  3. Let lim (xtooo) (2 ^(x) +a ^(x) +e ^(x))^(1//x)=L which of the follow...

    Text Solution

    |

  4. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  5. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  6. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  7. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  8. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  9. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  10. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  11. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  12. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  13. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  14. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  15. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  16. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  17. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  18. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  19. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  20. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |