Home
Class 12
MATHS
if lim(x->0)(ptanqx^2-3cos^2x+4)^(1/(3x^...

if `lim_(x->0)(ptanqx^2-3cos^2x+4)^(1/(3x^2))=e^(5/3)`

A

`p=sqrt2,q= (1)/(2 sqrt2)`

B

`=(1)/(sqrt2), q=2 sqrt2`

C

`p=1,q=2`

D

`p=2,q=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by: \[ \lim_{x \to 0} \left( p \tan(q x^2) - 3 \cos^2(x) + 4 \right)^{\frac{1}{3x^2}} = e^{\frac{5}{3}} \] we will follow these steps: ### Step 1: Analyze the limit expression As \( x \to 0 \), we can evaluate the expression inside the limit. We know that: - \( \tan(q x^2) \approx q x^2 \) (since \( \tan(x) \approx x \) for small \( x \)) - \( \cos^2(x) \approx 1 \) (since \( \cos(x) \approx 1 \) for small \( x \)) Substituting these approximations into the limit gives: \[ p \tan(q x^2) - 3 \cos^2(x) + 4 \approx p(q x^2) - 3(1) + 4 = pq x^2 + 1 \] ### Step 2: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \left( pq x^2 + 1 \right)^{\frac{1}{3x^2}} \] ### Step 3: Identify the form of the limit As \( x \to 0 \), \( pq x^2 + 1 \) approaches \( 1 \), and thus we have the indeterminate form \( 1^\infty \). We can use the property of limits: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{\lim_{x \to 0} g(x)(f(x) - 1)} \] Here, let \( f(x) = pq x^2 + 1 \) and \( g(x) = \frac{1}{3x^2} \). ### Step 4: Calculate \( g(x)(f(x) - 1) \) We find: \[ f(x) - 1 = pq x^2 \] Thus, \[ g(x)(f(x) - 1) = \frac{1}{3x^2}(pq x^2) = \frac{pq}{3} \] ### Step 5: Evaluate the limit Now we can evaluate the limit: \[ \lim_{x \to 0} g(x)(f(x) - 1) = \frac{pq}{3} \] So we have: \[ \lim_{x \to 0} \left( pq x^2 + 1 \right)^{\frac{1}{3x^2}} = e^{\frac{pq}{3}} \] ### Step 6: Set the limit equal to the given expression We know from the problem statement that this limit equals \( e^{\frac{5}{3}} \): \[ e^{\frac{pq}{3}} = e^{\frac{5}{3}} \] ### Step 7: Equate the exponents Since the bases are the same, we can equate the exponents: \[ \frac{pq}{3} = \frac{5}{3} \] ### Step 8: Solve for \( pq \) Multiplying both sides by 3 gives: \[ pq = 5 \] ### Step 9: Find possible values of \( p \) and \( q \) We need to find pairs \( (p, q) \) such that \( pq = 5 \). Possible pairs include: - \( (1, 5) \) - \( (5, 1) \) - \( (2, 2.5) \) - \( (2.5, 2) \) ### Conclusion The values of \( p \) and \( q \) must satisfy \( pq = 5 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)x^3cos(2/x) =

Evaluate lim_(x->0^-) (x^2-3x+2)/(x^3-2x^2)

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

lim_(x->0)(e^(5x) - 1)/(3x)

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is