Home
Class 12
MATHS
Let f (x) =x + sqrt(x^(2) +2x) and g (x)...

Let `f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x,` then:

A

`lim _(x to oo) g (x) =1`

B

`lim _(x to oo) f (x)=1`

C

` lim_(x to -oo) f (x)=-1`

D

`lim _(x to oo) g (x)=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits of the functions \( f(x) \) and \( g(x) \) as \( x \) approaches infinity and negative infinity. ### Given Functions: 1. \( f(x) = x + \sqrt{x^2 + 2x} \) 2. \( g(x) = \sqrt{x^2 + 2x} - x \) ### Step 1: Evaluate \( \lim_{x \to \infty} g(x) \) We start with the function \( g(x) \): \[ g(x) = \sqrt{x^2 + 2x} - x \] To simplify, we can rationalize the expression: \[ g(x) = \frac{(\sqrt{x^2 + 2x} - x)(\sqrt{x^2 + 2x} + x)}{\sqrt{x^2 + 2x} + x} \] This gives us: \[ g(x) = \frac{x^2 + 2x - x^2}{\sqrt{x^2 + 2x} + x} = \frac{2x}{\sqrt{x^2 + 2x} + x} \] Now, we can factor \( x \) out of the square root: \[ g(x) = \frac{2x}{\sqrt{x^2(1 + \frac{2}{x})} + x} = \frac{2x}{x\sqrt{1 + \frac{2}{x}} + x} \] This simplifies to: \[ g(x) = \frac{2}{\sqrt{1 + \frac{2}{x}} + 1} \] Now, taking the limit as \( x \to \infty \): \[ \lim_{x \to \infty} g(x) = \frac{2}{\sqrt{1 + 0} + 1} = \frac{2}{1 + 1} = 1 \] ### Step 2: Evaluate \( \lim_{x \to -\infty} f(x) \) Now we evaluate \( f(x) \): \[ f(x) = x + \sqrt{x^2 + 2x} \] We can again factor out \( x^2 \) from the square root: \[ f(x) = x + \sqrt{x^2(1 + \frac{2}{x})} = x + |x|\sqrt{1 + \frac{2}{x}} \] Since \( x \to -\infty \), \( |x| = -x \): \[ f(x) = x - x\sqrt{1 + \frac{2}{x}} = x(1 - \sqrt{1 + \frac{2}{x}}) \] Now, taking the limit as \( x \to -\infty \): \[ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x(1 - \sqrt{1 + 0}) = \lim_{x \to -\infty} x(1 - 1) = \lim_{x \to -\infty} x(0) = 0 \] However, we need to analyze the expression more closely. As \( x \to -\infty \): \[ f(x) = x(1 - \sqrt{1 + \frac{2}{x}}) = x(1 - (1 + \frac{1}{x} + O(\frac{1}{x^2}))) = x(-\frac{1}{x} + O(\frac{1}{x^2})) = -1 + O(\frac{1}{x}) \] Thus, we find: \[ \lim_{x \to -\infty} f(x) = -1 \] ### Conclusion: - \( \lim_{x \to \infty} g(x) = 1 \) - \( \lim_{x \to -\infty} f(x) = -1 \) ### Final Answers: - \( \lim_{x \to \infty} g(x) = 1 \) - \( \lim_{x \to -\infty} f(x) = -1 \)
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

let f(x)=sqrt(1+x^2) then

Let f (x)=x^(2) -2x -3, x ge 1 and g (x)=1 +sqrt(x+4), x ge-4 then the number of real solution os equation f (x) =g (x) is/are

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -(g (x,y))^(2)=1/2 and f (x,y) . G(x,y) =(sqrt3)/(4) Find the number of ordered pairs (x,y) ?

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  2. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  3. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  4. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  5. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  6. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  7. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  8. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  9. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  10. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  11. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  12. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  13. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  14. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  15. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  16. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  17. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  18. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  19. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |