Home
Class 12
MATHS
If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n...

If `f(x)=(lim)_(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1)))` where `[y]` denotes largest integer `lt=,` then identify the correct statement(s). `("lim")_(nvecoo)f(x)=0` `("lim")_(nvecpi/2)f(x)=(3pi)/4` `f(x)=(3x)/2AAx in [0,pi/2]` `f(x)=0AAx in (pi/2,(3pi)/2)`

A

`lim _(xto 0) f (x)=0`

B

`lim _(x (pi)/(2)) f(x) =(3pi)/(4)`

C

`f (x) =(3pi)/(2)AA x in [0, (pi)/(2)]`

D

`f (x)= 0 AA x in ((pi)/(2), (3pi)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by: \[ f(x) = \lim_{n \to \infty} \left( \frac{3}{2} + \left\lfloor \cos x \cdot \left( \sqrt{n^2 + 1} - \sqrt{n^2 - 3n + 1} \right) \right\rfloor \right) \] ### Step 1: Simplifying the Square Roots First, we simplify the expression inside the limit: \[ \sqrt{n^2 + 1} - \sqrt{n^2 - 3n + 1} \] Using the identity \( \sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}} \): Let \( a = n^2 + 1 \) and \( b = n^2 - 3n + 1 \). Calculating \( a - b \): \[ a - b = (n^2 + 1) - (n^2 - 3n + 1) = 3n \] Now, we calculate \( \sqrt{a} + \sqrt{b} \): \[ \sqrt{n^2 + 1} + \sqrt{n^2 - 3n + 1} \approx \sqrt{n^2} + \sqrt{n^2} = 2n \quad \text{(as } n \to \infty\text{)} \] Thus, we have: \[ \sqrt{n^2 + 1} - \sqrt{n^2 - 3n + 1} = \frac{3n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 3n + 1}} \approx \frac{3n}{2n} = \frac{3}{2} \] ### Step 2: Substitute Back into the Limit Now substitute this back into the function \( f(x) \): \[ f(x) = \lim_{n \to \infty} \left( \frac{3}{2} + \left\lfloor \cos x \cdot \frac{3}{2} \right\rfloor \right) \] ### Step 3: Evaluate the Floor Function The value of \( \left\lfloor \cos x \cdot \frac{3}{2} \right\rfloor \) depends on the value of \( \cos x \): - If \( \cos x = 1 \) (at \( x = 0 \)), then \( \left\lfloor \frac{3}{2} \right\rfloor = 1 \). - If \( \cos x = 0 \) (at \( x = \frac{\pi}{2} \)), then \( \left\lfloor 0 \right\rfloor = 0 \). - If \( \cos x = -1 \) (at \( x = \pi \)), then \( \left\lfloor -\frac{3}{2} \right\rfloor = -2 \). ### Step 4: Determine the Function Behavior Thus, we can summarize the behavior of \( f(x) \): - For \( x \in [0, \frac{\pi}{2}) \), \( \cos x \) is positive, and \( f(x) = 2 \). - For \( x = \frac{\pi}{2} \), \( f(x) = \frac{3}{2} + 0 = \frac{3}{2} \). - For \( x \in (\frac{\pi}{2}, \frac{3\pi}{2}) \), \( \cos x \) is negative, and \( f(x) = \frac{3}{2} - 2 = -\frac{1}{2} \). ### Step 5: Evaluate the Limits Now we can evaluate the limits: 1. \( \lim_{n \to \infty} f(x) = 0 \) is not true since \( f(x) \) takes values greater than 0 in certain intervals. 2. \( \lim_{n \to \frac{\pi}{2}} f(x) = \frac{3\pi}{4} \) is also not true. 3. \( f(x) = \frac{3x}{2} \) for \( x \in [0, \frac{\pi}{2}] \) is true. 4. \( f(x) = 0 \) for \( x \in (\frac{\pi}{2}, \frac{3\pi}{2}) \) is also true. ### Conclusion The correct statements are: - \( f(x) = \frac{3x}{2} \) for \( x \in [0, \frac{\pi}{2}] \) - \( f(x) = 0 \) for \( x \in (\frac{\pi}{2}, \frac{3\pi}{2}) \)
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If [x] denotes the greatest integer less than or equal to x , then evaluate ("lim")_(nvecoo)1/(n^3){[1^2x]+[2^2x]+[3^2x]+}[n^2x]}

If f(x)=(lim)_(nvecoo)(cos(x/(sqrt(n))))^n , then the value of (lim)(xvec0)(f(x)-1)/x is 0 b. 1 c. 2 d. 3//2

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

If L=("lim")_(nvecoo)(2x3^2x2^3x3^4 x2^(n-1)x3^n)^1/((n^(2+1)) , then the value of L^4 is

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

If f(x)={x+1/2, x<0 2x+3/4,x >=0 , then [(lim)_(x->0)f(x)]= (where [.] denotes the greatest integer function)

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  2. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  3. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  4. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  5. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  6. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  7. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  8. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  9. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  10. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  11. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  12. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  13. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  14. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  15. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  16. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  17. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  18. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |