Home
Class 12
MATHS
Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n))...

Let `f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0` otherwisw then identity the correct statement (s).

A

`lim_(xto0) f (x) f(2x)=0`

B

`lim _(xto0) f (x)` does not exist

C

`lim _(xto0) f (x) f (2x) =0`

D

` lim_(xto0) f (x) (2x)` does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined as follows: \[ f(x) = \begin{cases} (-1)^n & \text{if } x = \frac{1}{2^{2^n}}, n = 1, 2, 3, \ldots \\ 0 & \text{otherwise} \end{cases} \] We will determine the behavior of this function and identify the correct statements regarding it. ### Step 1: Identify Values of \( f(x) \) We start by calculating \( f(x) \) for specific values of \( n \): - For \( n = 1 \): \[ x = \frac{1}{2^{2^1}} = \frac{1}{2^2} = \frac{1}{4} \quad \Rightarrow \quad f\left(\frac{1}{4}\right) = (-1)^1 = -1 \] - For \( n = 2 \): \[ x = \frac{1}{2^{2^2}} = \frac{1}{2^4} = \frac{1}{16} \quad \Rightarrow \quad f\left(\frac{1}{16}\right) = (-1)^2 = 1 \] - For \( n = 3 \): \[ x = \frac{1}{2^{2^3}} = \frac{1}{2^8} = \frac{1}{256} \quad \Rightarrow \quad f\left(\frac{1}{256}\right) = (-1)^3 = -1 \] - For \( n = 4 \): \[ x = \frac{1}{2^{2^4}} = \frac{1}{2^{16}} = \frac{1}{65536} \quad \Rightarrow \quad f\left(\frac{1}{65536}\right) = (-1)^4 = 1 \] From this pattern, we observe that \( f(x) \) alternates between -1 and 1 for \( x = \frac{1}{2^{2^n}} \) depending on whether \( n \) is odd or even. ### Step 2: Behavior as \( n \to \infty \) As \( n \) increases, \( x = \frac{1}{2^{2^n}} \) approaches 0. Therefore, we need to evaluate the limit: \[ \lim_{x \to 0} f(x) \] For values of \( x \) approaching 0, we find that: - \( f(x) = 0 \) for all \( x \) that are not of the form \( \frac{1}{2^{2^n}} \). - As \( x \) approaches 0 from the positive side, \( f(x) \) can take values of either -1 or 1 depending on whether the last \( n \) was odd or even. ### Step 3: Left-Hand and Right-Hand Limits - **Right-hand limit** as \( x \to 0^+ \): \[ \lim_{x \to 0^+} f(x) = \text{can be } -1 \text{ or } 1 \] - **Left-hand limit** as \( x \to 0^- \): \[ \lim_{x \to 0^-} f(x) = 0 \] Since the left-hand limit (0) does not equal the right-hand limit (which can be -1 or 1), we conclude that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] ### Step 4: Conclusion Based on the analysis, we can summarize the findings: 1. The function \( f(x) \) does not have a limit as \( x \to 0 \). 2. For values of \( x \) that are not of the form \( \frac{1}{2^{2^n}} \), \( f(x) = 0 \). 3. The values of \( f(x) \) oscillate between -1 and 1 for specific points. ### Correct Statement The correct statement is that the limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1) . If the range of this function is [-4,3] , then the value of (m^(2)+n^(2))/(4) is ….

Statement 1: sum_(r=0)^n(r+1)^n c_r=(n+2)2^(n-1)dot Statement 2: sum_(r=0)^n(r+1)^n c_r=(1+x)^n+n x(1+x)^(n-1)dot (1) Statement 1 is false, Statement 2 is true. (2) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1 (3) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (4) Statement 1 is true, Statement 2 is false.

Let f: R-> R be a continuous function defined by f(x)""=1/(e^x+2e^(-x)) . Statement-1: f(c)""=1/3, for some c in R . Statement-2: 0""<""f(x)lt=1/(2sqrt(2)), for all x in R . (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R. Consider the following statements. I. Domain of f is R. II. Range of f is R. III. Domain of f is R-(4n-1)pi/2, n in I. IV. Domain of f is R-(4n+1)pi/2, n in I. Which of the following is correct?

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

Let f:R to R defined by f(x)=x^(2)+1, forall x in R . Choose the correct answer

If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r(x) denotes the rth order derivative of f(x) with respect to x , is a. n b. 2^n c. 2^(n-1) d. none of these

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Statement -1: Let f(x) be a function satisfying f(x-1)+f(x+1)=sqrt(2)f(x) for all x in R . Then f(x) is periodic with period 8. Statement-2: For every natural number n there exists a periodic functions with period n.

Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x^(n-1))x^n;(n >= 4) then :

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  2. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  3. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  4. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  5. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  6. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  7. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  8. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  9. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  10. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  11. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  12. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  13. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  14. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  15. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  16. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  17. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  18. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |