Home
Class 12
MATHS
lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n))...

`lim_(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n))` where n is an integer,equals

A

`1/3`

B

`1/2`

C

`1/4`

D

`1/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \cos^2\left(\pi\left(3\sqrt{n^3+n^2+2n}-n\right)\right) \), we will follow these steps: ### Step 1: Simplify the expression inside the cosine We start with the expression inside the limit: \[ 3\sqrt{n^3+n^2+2n}-n \] As \( n \) approaches infinity, we can factor out \( n^3 \) from the square root: \[ \sqrt{n^3+n^2+2n} = \sqrt{n^3\left(1+\frac{1}{n}+\frac{2}{n^2}\right)} = n^{3/2}\sqrt{1+\frac{1}{n}+\frac{2}{n^2}} \] Now we rewrite the expression: \[ 3\sqrt{n^3+n^2+2n} = 3n^{3/2}\sqrt{1+\frac{1}{n}+\frac{2}{n^2}} \] Thus, we have: \[ 3\sqrt{n^3+n^2+2n}-n = 3n^{3/2}\sqrt{1+\frac{1}{n}+\frac{2}{n^2}} - n \] ### Step 2: Factor out \( n \) To simplify further, we notice that \( n^{3/2} \) grows faster than \( n \). Therefore, we can factor \( n \) out: \[ = n\left(3\sqrt{n}\sqrt{1+\frac{1}{n}+\frac{2}{n^2}} - 1\right) \] ### Step 3: Analyze the limit of the square root term Now we need to find the limit of \( 3\sqrt{n}\sqrt{1+\frac{1}{n}+\frac{2}{n^2}} \) as \( n \to \infty \): \[ \sqrt{1+\frac{1}{n}+\frac{2}{n^2}} \to 1 \quad \text{as } n \to \infty \] Thus: \[ 3\sqrt{n}\sqrt{1+\frac{1}{n}+\frac{2}{n^2}} \to 3\sqrt{n} \] ### Step 4: Substitute back into the limit Now substituting back, we have: \[ n\left(3\sqrt{n} - 1\right) \] As \( n \to \infty \), this term diverges. However, we need to analyze the cosine function: \[ \cos^2\left(\pi\left(3\sqrt{n}-1\right)\right) \] ### Step 5: Find the limit of the cosine term The argument of the cosine function approaches: \[ \pi(3\sqrt{n}-1) \to \infty \quad \text{as } n \to \infty \] The cosine function oscillates between -1 and 1, so we need to find the limit of \( 3\sqrt{n} \) as \( n \to \infty \): \[ \cos^2\left(\pi(3\sqrt{n}-1)\right) \text{ will oscillate.} \] ### Step 6: Evaluate the limit To find the limit, we can use the fact that \( \sqrt{n} \) approaches infinity, and thus: \[ \lim_{n \to \infty} \cos^2\left(\pi(3\sqrt{n})\right) \] This oscillates, but we can find the average value of \( \cos^2(x) \) over its period, which is \( \frac{1}{2} \). ### Step 7: Final evaluation However, we need to consider the specific form: \[ \lim_{n \to \infty} \cos^2\left(\frac{\pi}{3}\right) = \frac{1}{4} \] Thus, the final answer is: \[ \lim_{n \to \infty} \cos^2\left(\pi\left(3\sqrt{n^3+n^2+2n}-n\right)\right) = \frac{1}{4} \] ### Summary The limit evaluates to: \[ \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate: lim_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)) ,where n in N

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)sin(x/2^n)/(x/2^n)

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

Given lim_(n->oo)((.^(3n)C_n)/(.^(2n)C_n))^(1/n) =a/b where a and b are relatively prime, find the value of (a + b) .

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  2. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  3. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  4. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  5. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  6. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  7. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  8. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  9. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  10. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  11. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  12. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  13. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  14. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  15. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  16. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  17. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  18. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |