Home
Class 12
MATHS
If alpha,beta in (-pi/2,0) such that (si...

If `alpha,beta in (-pi/2,0)` such that `(sin alpha+sinbeta)+(sinalpha)/(sinbeta)=0 and (sinalpha+sinbeta) (sinalpha)/(sinbeta)=-1 and lambda=lim_(n->oo) (1+(2sinalpha)^(2n))/((2sinbeta)^(2n))` then :

A

`alpha = (pi)/(6)`

B

`lamda =2`

C

`alpha =- (pi)/(3)`

D

`lamda =1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given equations and find the limit as specified. ### Step 1: Analyze the given equations We have two equations: 1. \((\sin \alpha + \sin \beta) + \frac{\sin \alpha}{\sin \beta} = 0\) 2. \((\sin \alpha + \sin \beta) \cdot \frac{\sin \alpha}{\sin \beta} = -1\) ### Step 2: Rearranging the first equation From the first equation, we can rearrange it as follows: \[ \sin \alpha + \sin \beta = -\frac{\sin \alpha}{\sin \beta} \] ### Step 3: Substitute into the second equation Now, substitute \(\sin \alpha + \sin \beta\) from the first equation into the second equation: \[ \left(-\frac{\sin \alpha}{\sin \beta}\right) \cdot \frac{\sin \alpha}{\sin \beta} = -1 \] This simplifies to: \[ -\frac{\sin^2 \alpha}{\sin^2 \beta} = -1 \] ### Step 4: Simplifying the equation Removing the negative sign gives us: \[ \frac{\sin^2 \alpha}{\sin^2 \beta} = 1 \] This implies: \[ \sin^2 \alpha = \sin^2 \beta \] ### Step 5: Finding the relationship between \(\alpha\) and \(\beta\) Since \(\alpha\) and \(\beta\) are in the interval \((- \frac{\pi}{2}, 0)\), we conclude: \[ \sin \alpha = \sin \beta \implies \alpha = \beta \] ### Step 6: Choosing a specific value for \(\alpha\) and \(\beta\) Let’s choose \(\alpha = \beta = -\frac{\pi}{6}\) (as suggested in the video). ### Step 7: Calculate \(\lambda\) Now we need to find: \[ \lambda = \lim_{n \to \infty} \frac{1 + (2 \sin \alpha)^{2n}}{(2 \sin \beta)^{2n}} \] Substituting \(\alpha = \beta = -\frac{\pi}{6}\): \[ \sin \left(-\frac{\pi}{6}\right) = -\frac{1}{2} \] Thus, \[ 2 \sin \alpha = 2 \left(-\frac{1}{2}\right) = -1 \] \[ 2 \sin \beta = 2 \left(-\frac{1}{2}\right) = -1 \] Now substituting these values into \(\lambda\): \[ \lambda = \lim_{n \to \infty} \frac{1 + (-1)^{2n}}{(-1)^{2n}} = \lim_{n \to \infty} \frac{1 + 1}{1} = 2 \] ### Final Answer Thus, the value of \(\lambda\) is: \[ \lambda = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)

If 0ltalphaltbetaltpi/2, show that (sinalpha)/alphagt(sinbeta)/beta

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If 3sinbeta=sin(2alpha+beta) then

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )

Show by vector method that sin(alpha-beta)=sinalphacosbeta-cosalpha sinbeta.

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  2. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  3. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  4. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  5. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  6. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  7. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  8. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  9. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  10. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  11. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  12. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  13. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  14. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  15. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  16. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  17. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  18. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |