Home
Class 12
MATHS
Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x...

Let `f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2` If `lim_(x->2) [f(x)]` exists the possible values a can take is/are (where [.] represents the grestest integer function)

A

2

B

`5/2`

C

3

D

`7/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) such that the limit \( \lim_{x \to 2} f(x) \) exists. This requires that the left-hand limit (LHL) and the right-hand limit (RHL) at \( x = 2 \) are equal. ### Step 1: Define the function \( f(x) \) The function is defined as: \[ f(x) = \begin{cases} |x - 2| + a^2 - 6a + 9 & \text{if } x < 2 \\ 5 - 2x & \text{if } x \geq 2 \end{cases} \] ### Step 2: Calculate the left-hand limit (LHL) as \( x \to 2 \) For \( x < 2 \): \[ f(x) = |x - 2| + a^2 - 6a + 9 \] As \( x \) approaches 2 from the left, \( |x - 2| = 2 - x \). Therefore: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} ((2 - x) + a^2 - 6a + 9) \] Substituting \( x = 2 - h \) where \( h \to 0 \): \[ = \lim_{h \to 0} (2 - (2 - h) + a^2 - 6a + 9) = \lim_{h \to 0} (h + a^2 - 6a + 9) = a^2 - 6a + 9 \] ### Step 3: Calculate the right-hand limit (RHL) as \( x \to 2 \) For \( x \geq 2 \): \[ f(x) = 5 - 2x \] Thus: \[ \lim_{x \to 2^+} f(x) = 5 - 2(2) = 5 - 4 = 1 \] ### Step 4: Set the limits equal for continuity For the limit to exist, we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \] This gives us the equation: \[ a^2 - 6a + 9 = 1 \] ### Step 5: Solve the equation Rearranging the equation: \[ a^2 - 6a + 9 - 1 = 0 \implies a^2 - 6a + 8 = 0 \] Factoring the quadratic: \[ (a - 4)(a - 2) = 0 \] Thus, the solutions are: \[ a = 4 \quad \text{or} \quad a = 2 \] ### Conclusion The possible values of \( a \) for which the limit exists are \( a = 2 \) and \( a = 4 \).
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the values (where [.] denotes the greatest integer function)

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

If f:R->R is defined by f(x)=[x−3]+|x−4| for x in R , then lim_(x->3) f(x) is equal to (where [.] represents the greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.

VIKAS GUPTA (BLACK BOOK) ENGLISH-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the fo...

    Text Solution

    |

  2. Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

    Text Solution

    |

  3. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  4. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  5. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  6. If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes ...

    Text Solution

    |

  7. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  8. L=underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) ...

    Text Solution

    |

  9. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  10. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  11. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  12. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  13. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  14. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  15. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  16. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  17. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  18. If L=underset(xto0)lim(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exist...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |