Home
Class 12
MATHS
The value of the determinant |{:(1,0,-1)...

The value of the determinant `|{:(1,0,-1),(a,1,1-a),(b,a,1+a-b):}|` depends on :

A

only a

B

only b

C

neither a nor b

D

both a and b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} 1 & 0 & -1 \\ a & 1 & 1-a \\ b & a & 1+a-b \end{vmatrix} \), we will expand it using the first row. ### Step 1: Expand the determinant using the first row We can expand the determinant along the first row. The formula for the determinant expansion is: \[ D = a_{11} \cdot D_{11} - a_{12} \cdot D_{12} + a_{13} \cdot D_{13} \] where \( D_{ij} \) is the determinant of the submatrix obtained by deleting the \( i \)-th row and \( j \)-th column. In our case: - \( a_{11} = 1 \), \( a_{12} = 0 \), \( a_{13} = -1 \) Thus, we have: \[ D = 1 \cdot D_{11} + 0 \cdot D_{12} - 1 \cdot D_{13} \] ### Step 2: Calculate \( D_{11} \) and \( D_{13} \) 1. **Calculate \( D_{11} \)**: \[ D_{11} = \begin{vmatrix} 1 & 1-a \\ a & 1+a-b \end{vmatrix} = (1)(1+a-b) - (1-a)(a) = 1 + a - b - a + a^2 = a^2 + 1 - b \] 2. **Calculate \( D_{13} \)**: \[ D_{13} = \begin{vmatrix} a & 1 \\ b & a \end{vmatrix} = (a)(a) - (1)(b) = a^2 - b \] ### Step 3: Substitute back into the determinant formula Now substituting back into our expression for \( D \): \[ D = 1 \cdot (a^2 + 1 - b) - 1 \cdot (a^2 - b) \] ### Step 4: Simplify the expression Now simplify: \[ D = (a^2 + 1 - b) - (a^2 - b) = a^2 + 1 - b - a^2 + b \] Notice that \( -b \) and \( +b \) cancel out, and \( a^2 \) and \( -a^2 \) also cancel out: \[ D = 1 \] ### Conclusion The value of the determinant \( D \) is always \( 1 \), regardless of the values of \( a \) and \( b \). Therefore, the determinant depends on neither \( a \) nor \( b \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| is positivie then (a,b,c lt 0)

The value of the determinant |{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}| doesn't depend on

The value of the determinant |(1+a, 1, 1),(1, 1+a, 1),(1, 1, 1+a)| is zero if (A) a=-3 (B) a=0 (C) a=2 (D) a=1

If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find the value of the determinant |(1+a,1 ,1), (1, 1+b,1),( 1, 1 ,1+c)| .

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a G.P., then the value of the determinant |(log a,p,1),(log b,q,1),(log c,r,1)| , is

If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

Write the value of the determinant |[a,1,b+c], [b,1,c+a] ,[c,1,a+b]| .

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is