Home
Class 12
MATHS
/\=|(a,a^2,0),(1,2a+b,a+b),(0,1,2a+3b)| ...

`/_\=|(a,a^2,0),(1,2a+b,a+b),(0,1,2a+3b)|` is divisible by `a+b` b. `a+2b` c. `2a+3b` d. `a^2`

A

(2a+b) is a factor of f(a,b)

B

(a+2b) is a factor of f(a,b)

C

(a+b) is a factor of f(a,b)

D

a is factor of f (a,b)

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

|(a, a^2, 0), (1, 2a+b ,(a+b)), (0, 1, 2a+3b)| is divisible by a. a+b b. a+2b c. 2a+3b d. a^2

Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)| is divisible by a. a+b b. a+2b c. 2a+3b d. a^2

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are non coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If a, b, c are real and x^3-3b^2x+2c^3 is divisible by x -a and x - b, then (a) a =-b=-c (c) a = b = c or a =-2b-_ 2c (b) a = 2b = 2c (d) none of these

a^2b^3\ X\ 2a b^2 is equal to: (a) 2a^3b^4 (b) 2a^3b^5 (c) 2a b (d) a^3b^5

If [(a-b,2a+c),(2a-b,3c+d)]=[(-1, 5),( 0, 13)] , find the value of bdot