Home
Class 12
MATHS
if D=|{:(x+d,x+e,x+f),(x+d+1,x+e+1,x+f+1...

if `D=|{:(x+d,x+e,x+f),(x+d+1,x+e+1,x+f+1),(x+a,x+b,x+c):}|` then D does not depend on :

A

a

B

e

C

d

D

x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( D \) given by the matrix: \[ D = \begin{vmatrix} x + d & x + e & x + f \\ x + d + 1 & x + e + 1 & x + f + 1 \\ x + a & x + b & x + c \end{vmatrix} \] ### Step 1: Write down the determinant We start with the determinant as given: \[ D = \begin{vmatrix} x + d & x + e & x + f \\ x + d + 1 & x + e + 1 & x + f + 1 \\ x + a & x + b & x + c \end{vmatrix} \] ### Step 2: Perform row operation We will subtract the first row from the second row: \[ D = \begin{vmatrix} x + d & x + e & x + f \\ 1 & 1 & 1 \\ x + a & x + b & x + c \end{vmatrix} \] ### Step 3: Perform column operations Next, we will perform column operations. We subtract the second column from the first column and the third column from the second column: \[ D = \begin{vmatrix} x + d - (x + e) & x + e - (x + f) & x + f \\ 1 - 1 & 1 - 1 & 1 \\ x + a - (x + b) & x + b - (x + c) & x + c \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} d - e & e - f & f \\ 0 & 0 & 1 \\ a - b & b - c & c \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant along the second row: \[ D = -1 \cdot \begin{vmatrix} d - e & e - f \\ a - b & b - c \end{vmatrix} \] ### Step 5: Calculate the determinant The determinant can be calculated as follows: \[ D = -1 \cdot \left( (d - e)(b - c) - (e - f)(a - b) \right) \] ### Conclusion Notice that the expression does not contain \( x \) at all. Therefore, we conclude that \( D \) does not depend on \( x \). Thus, the final answer is that \( D \) does not depend on \( x \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x^n-a^n)/(x-a) , then f'(a) is a. 1 b. 1/2 c. 0 d. does not exist

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c , then (a) f(x) is an even function (b) f(x) is a bounded function (c) the range of f(x) is (0,1) (d) f(x) has two points of extrema

If f(x)=x e^(x(x-1)) , then a) f(x) is increasing on [-1/2,1] b) decreasing on R c) increasing on R (d) decreasing on [-1/2,1]

If X and Y are two non-empty sets where f: X->Y ,is function is defined such that f(c) = {f (x): x in C} for C sube X and f^-1 (D) = {x: f(x) in D} for D sube Y ,for any A sube Y and B sube Y , then

If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f), then The domain of f(x) is

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

If f(x)=(log)_e(1-x)a n d\ g(x)=[x] , then determine each of the following function : fg

If a ,b ,c ,d ,e , and f are in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

(xe^x)/(1+x)^2dx= (A) e^x/(1+x) (B) e^x/(1+x)^2 (C) e^xlog(1+x) (D) none of these