Home
Class 12
MATHS
Value of |{:(x-y-z,2x,2x),(2y,y-z-x,2y)...

Value of `|{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|`

A

`xyz(x+y+z)^2`

B

`(x+y+z)(x+y+z)^2`

C

`(x+y+z)^3`

D

`(x+y+z)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |{:(x-y-z, 2x, 2x),(2y, y-z-x, 2y),(2z, 2z, z-x-y):}| \), we will follow these steps: ### Step 1: Write down the determinant We start with the given matrix: \[ A = \begin{pmatrix} x - y - z & 2x & 2x \\ 2y & y - z - x & 2y \\ 2z & 2z & z - x - y \end{pmatrix} \] ### Step 2: Perform row operations We will add all three rows together and replace the first row with this sum. This simplifies our calculations: \[ R_1 \rightarrow R_1 + R_2 + R_3 \] Calculating the new first row: \[ R_1 = (x - y - z + 2y + 2z, 2x + (y - z - x) + 2z, 2x + 2y + (z - x - y)) \] This simplifies to: \[ R_1 = (x + y + z, x + y + z, x + y + z) \] Thus, the matrix becomes: \[ A = \begin{pmatrix} x + y + z & x + y + z & x + y + z \\ 2y & y - z - x & 2y \\ 2z & 2z & z - x - y \end{pmatrix} \] ### Step 3: Factor out common terms Now we can factor out \( (x + y + z) \) from the first row: \[ |A| = (x + y + z) \cdot \begin{vmatrix} 1 & 1 & 1 \\ 2y & y - z - x & 2y \\ 2z & 2z & z - x - y \end{vmatrix} \] ### Step 4: Simplify the determinant Next, we will perform column operations to simplify the determinant: \[ C_2 \rightarrow C_2 - C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - C_1 \] This gives us: \[ |A| = (x + y + z) \cdot \begin{vmatrix} 1 & 0 & 0 \\ 2y & (y - z - x) - 2y & 2y \\ 2z & 2z - 2z & (z - x - y) - 2z \end{vmatrix} \] This simplifies to: \[ |A| = (x + y + z) \cdot \begin{vmatrix} 1 & 0 & 0 \\ 2y & -z - x - y & 2y \\ 2z & 0 & -x - y - z \end{vmatrix} \] ### Step 5: Calculate the determinant Now we can calculate the determinant: \[ |A| = (x + y + z) \cdot 1 \cdot \begin{vmatrix} -z - x - y & 2y \\ 0 & -x - y - z \end{vmatrix} \] Calculating this determinant: \[ = (x + y + z) \cdot (-z - x - y)(-x - y - z) - 0 = (x + y + z)^2 \] ### Final Result Thus, the value of the determinant is: \[ |A| = (x + y + z)^3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

Solve the system {:(x-y+2z=-3),(2x+y-z=0),(-x+2y-3z=7):}

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)